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Stacks and Subroutines 

Stack 

LIFO/FILO                    last             in          first            out 
__________ data structure - ________________ ___________ ________________ ___________  

Push         put item on stack 
__________ - ________________________________________________________________________ 

Pop          get last item from stack 
__________ - ________________________________________________________________________ 

Airplane Luggage Example 

   

 
___________ 
           \ 
            \ 
             \__________ 

Matching Parentheses 

Given a string containing just the characters '(', ')', '{', '}', '[' and ']', 
determine if the string contains all valid sets of parentheses. 
 
Sample inputs / outputs: 
"()"        -> return True 
"()[]{}"    -> return True 
"(]"        -> return False 
"([)]"      -> return False 
"{[]}"      -> return True 
 
 
 
 

Algorithm 

Loop through elements in string: 
    If opening parenthesis (, [, {: 
    If ______________________________________________________________________: 
        Push onto stack 
    If closing parenthesis ), ], }: 
    If ______________________________________________________________________: 
        Pop last item from stack 
            If doesn’t match: 
            If ______________________________________________________________: 
                Return False 
 
Return True 
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Input: “()” 
 
Character : “(” 
 
 

 
Character : “)” 

|     | 
|_____| 
|     | 
|_____| 

 
 

|     | 
|_____| 
|     | 
|_____| 

Input: “{[]}” 
 
Character : “{” 
 
 

 
Character : “[” 
 
 
 
 

 
Character : “]” 
 
 
 
 

 
Character : “}” 
 
 
 
 
 

|     | 
|_____| 
|     | 
|_____| 

 
 

|     | 
|_____| 
|     | 
|_____| 

 
 

|     | 
|_____| 
|     | 
|_____| 

 
 

|     | 
|_____| 
|     | 
|_____| 

 

Input: “[)” 
 
Character : “[” 
 
 

 
Character : “)” 

|     | 
|_____| 
|     | 
|_____| 

 
 

|     | 
|_____| 
|     | 
|_____| 
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Input: “([)]” 
 
Character : “[” 
 
 

 
Character : “)” 

|     | 
|_____| 
|     | 
|_____| 

 
 

|     | 
|_____| 
|     | 
|_____| 

Input: “([)]” 
 
Character : “(” 
 
 

 
Character : “[” 
 
 
 
 

 
Character : “)” 
 
 
 
 

 
Character : “]” 
 
 
 
 
 

|     | 
|_____| 
|     | 
|_____| 

 
 

|     | 
|_____| 
|     | 
|_____| 

 
 

|     | 
|_____| 
|     | 
|_____| 

 
 

|     | 
|_____| 
|     | 
|_____| 

 

Subroutine 

     subprograms, functions, methods, procedures in higher level languages 
aka: ________________________________________________________________________________ 

                        save register values 
We can use the stack to _____________________________________________________________ 

                        after a subroutine 
so we can retrieve them _____________________________________________________________ 

                         down 
In MIPS, the stack grows ____________________ 
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Register Review 

$t0 - $t9 

temporary registers - values can be altered when entering a subroutine; do not 
expect $t regs to have the same values after a subroutine call 
 
 

$s0 - $s7 

saved registers - should not be altered by subroutines; must be pushed at the 
beginning of a subroutine and popped at the end if used by subroutine; should have  
 
 

$a0 - $a3 

 
arguments to subroutines - only way to pass values into a subroutine 
 
 

$v0 - $v1 

used for return values from a subroutine; only way to pass values from a 
subroutine; also used in syscalls 
 
 

$ra 

Return address - a pointer to the address of the next instruction to execute when 
returning from a subprogram 
 
 

$sp 

stack pointer - register that contains the address of the last item that was pushed 
to the stack 
 
 

Subroutine Diagram 

               ------------- 
$a0 --------->|             |---------> $v0 
$a1 --------->|             |---------> $v1 
               ------------- 
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Stack Usage 

Push One Register 

How to push a register value to the stack: 
 
No “push” command - must decrement stack pointer then store word 
 
 
 

Example 

Push $s0 to stack 
ex/ $s0 = 0xAAAAAAAA 
 
SUBI $sp $sp 4 
SW   $s0 ($sp) 
 
 
 
 
 
 
 

 

 ADDRESS CONTENTS 

$sp 
➔ 

0x7FFF FE00 0xDEADBEEF 

 0x7FFF FDFC  

 0x7FFF FDF8  

 0x7FFF FDF4  

 
 

Pop One Register 

How to pop a register value from the stack: 
 
No “pop” command - must load word, then increment stack pointer 
 
 
 

Example 

Pop one word from stack 
 
 
 
LW   $s0 ($sp) 
ADDI $sp $sp 4 

 

 ADDRESS CONTENTS 

 0x7FFF FE00 0xDEADBEEF 

$sp 
➔ 

0x7FFF FDFC  

 0x7FFF FDF8  

 0x7FFF FDF4  
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Push Multiple Registers 

How to push multiple registers to the stack: 
 
decrement $sp, store, decrement $sp, store, etc… 
 
OR 
 
decrement $sp once (4 * # regs to store), then store each reg w/offset 
 
 

Example 

Push $s0, $s1, $s2 to stack 
 
ex/ $s0 = 0xAAAAAAAA​
    $s1 = 0xBBBBBBBB​
    $s2 = 0xCCCCCCCC 
 
 
 
 
 
 

 

 ADDRESS CONTENTS 

$sp 
➔ 

0x7FFF FE00 0xC0FFEEEE 

 0x7FFF FDFC 0xAAAAAAAA 

 0x7FFF FDF8 0xBBBBBBBB 

$sp 
➔ 

0x7FFF FDF4 0xCCCCCCCC 

 

One at a time: 
 
SUBI $sp $sp 4 
SW   $s0 ($sp) 
SUBI $sp $sp 4 
SW   $s1 ($sp) 
SUBI $sp $sp 4 
SW   $s2 ($sp) 
 
 
 
 
 
 
 

Decrement $sp once: 
 
SUBI $sp $sp 12 
SW   $s2     ($sp) 
SW   $s1 ____($sp) 
SW   $s0 ____($sp) 
 

© 2019, Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in 

any format for educational, non-commercial purposes. Please give me appropriate credit should you 

choose to modify this resource. Thank you :) 



 

Stacks and Subroutines Page 7 of 11 Computer Systems and Assembly 

 

 
 
 
 

Pop Multiple Registers 

How to pop multiple registers from the stack: 
 
lw, increment $sp, lw, increment $sp, etc... 
 
OR 
 
lw each reg w/offset, increment $sp once (4 * # regs to store) 
 
 

Example 

Pop 3 words from stack 
 
 
 
 
 
 

 

 ADDRESS CONTENTS 

 0x7FFF FE00 0xC0FFEEEE 

 0x7FFF FDFC 0xAAAAAAAA 

 0x7FFF FDF8 0xBBBBBBBB 

$sp 
➔ 

0x7FFF FDF4 0xCCCCCCCC 

 

One at a time: 
 
LW   $s2 ($sp) 
ADDI $sp  $sp 12 
LW   $s1 ($sp) 
ADDI $sp  $sp 12 
LW   $s0 ($sp) 
ADDI $sp  $sp 12 
 
 
 
 
 
 
 

Increment $sp once: 
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LW   $s0 ____($sp)  
LW   $s1 ____($sp) 
LW   $s2     ($sp) 
ADDI $sp $sp 12 
 
 
 
 
 

Jump Instructions 

used to enter and exit subroutines, change program flow 
_____________________________________________________________________________________ 

       jump 
J: ​ ____________________________________________________________ 

Give an example of how to use this instruction 
    label 
J ______________________________ 

What does this instruction do? 
 
jumps unconditionally to address indicated by label 
 

How does this instruction affect the registers? 
 
$pc = label 

 
       jump and link 
JAL: ​ ____________________________________________________________ 

Give an example of how to use this instruction 
    label 
JAL ______________________________ 

What does this instruction do? 
 
jumps to the address of the label 
 

How does this instruction affect the registers? 
 
$ra = pc + 4 (stores the address of the next instruction after the jump in $ra) 
$pc = label 

       jump and link register 
JALR:​ ____________________________________________________________ 

Give an example of how to use this instruction 
     $t0 
JALR ______________________________ 
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What does this instruction do? 
 
jumps to the instruction with the address that’s in $t0 
 

How does this instruction affect the registers? 
 
$ra = pc + 4 (stores the address of the next instruction after the jump in $ra) 
$pc = $t0 ($t0 is register in instruction) 

       jump register 
JR:​ ____________________________________________________________ 

Give an example of how to use this instruction 
   $ra (most common use, you can also use any register) 
JR ______________________________ 

What does this instruction do? 
 
jumps to the instruction with the address that’s in $ra 
 

How does this instruction affect the registers? 
$pc = $ra 
 

Examples 

Basic Example 

address of 

instruction 

instruction  time current pc ra 

(after instr) 

pc 

(after instr) 

0x100 Main: NOP  1 100 ? 104 

0x104       JAL  Sub1  2 104 108 200 

0x108       NOP  3 200 108 204 

0x10C       JAL  Sub2  4 204 108 108 

0x110       NOP  5 108 108 10C 

... ...  6 10C 110 300 

0x200 Sub1: NOP  7 300 110 304 

0x204       JR   $ra  8 304 110 110 

... ...  9 110 310 114 

0x300 Sub2: NOP      

0x304       JR   $ra      
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Nested Subroutine 

address of 

instruction 

instruction  time current pc ra 

(after instr) 

pc 

(after instr) 

0x100 Main: NOP   1 100 ? 104 

0x104       JAL  Sub2   2 104 108 300 

0x108       NOP   3 300 108 304 

... ...   4 304 308 200 

0x200 Sub1: NOP   5 200 308 204 

0x204       JR   $ra   6 204 308 308 

... ...   7 308 308 30C 

0x300 Sub2: NOP   8 30C 308 310 

0x304       JAL Sub1   9 310 308 308 

0x308       NOP  10 308 308 30C 

0x30C       NOP  11 30C 308 310 

0x310       JR   $ra  12 310 308 308 
 

Which subroutines are the callers? 
Main, Sub2 
Which are the callees? 
Sub1, Sub2 

Is there a problem with this code? 
It enters an infinite loop because $ra is not saved when the program goes to Sub2 
 
 
 
 
 

Callee Save Registers 

caller may assume these registers were not changed by callee 
$ra, $s regs 
 

 

Caller Save Registers 

to ensure registers aren't modified by callee 
$t registers 
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Callee Save Example 

Use the stack to save $ra 

address of 

instruction 

instruction  time pc 

(crnt 

instr) 

ra 

(after 

instr) 

pc 

(after 

instr) 

memory 

address 

(in stack) 

contents 

0x100 Main: NOP   1 100 ? 104 0xFE00  

0x104       JAL  Sub2   2 104 108 300 0xFDFC 108 

0x108       NOP   3 300 108 304 0xFDF8  

... ...   4 304 108 308   

0x200 Sub1: NOP   5 308 108 30C   

0x204       JR   $ra   6 30C 310 200   

... ...   7 200 310 204   

0x300 Sub2: NOP   8 204 310 310   

0x304       SUBI $sp $sp 4   9 310 310 314   

0x308       SW   $ra ($sp)  10 314 310 318   

0x30C       JAL Sub1  11 318 108 31C   

0x310       NOP  12 31C 108 310   

0x314       NOP  13 310 108 314   

0x318       LW   $ra ($sp)  14 314 108 318   

0x31C       ADDI $sp $sp 4  15 318 108 31C   

0x310       JR   $ra  16 31C 108 310   

... ...  17 310 108 108   

   18 108 108 10C   
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