Stacks and Subroutines Page 1 of 11 Computer Systems and Assembly

Stacks and Subroutines

Stack

data structure -

Airplane Luggage Example

TaTala —_— N

Matching Parentheses

Given a string containing just the characters '(', ")', '{', '}', '[' and '],
determine if the string contains all valid sets of parentheses.

Sample inputs / outputs:

Algorithm
Loop through elements in string:

If

Push onto stack

If

Pop last item from stack

If

Return False

Return True

© 2019, Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in
any format for educational, non-commercial purposes. Please give me appropriate credit should you
choose to modify this resource. Thank you :)

Stacks and Subroutines

Page 2 of 11

Computer Systems and Assembly

Input: “()”

Character :

f(())

Character :

f()))

Input: “{[]}”

Character : “{”

Character : “[” | |
||
| |
||

Character : “]” | |
||
| |
||

Character : “}” | |
||
| |
||

Input: “[)” | |
[|

Character : “[” | |
| |

Character : “)”

© 2019, Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in
any format for educational, non-commercial purposes. Please give me appropriate credit should you

choose to modify this resource. Thank you :)

Stacks and Subroutines Page 3 of 11 Computer Systems and Assembly

Input: “([)]”

Character : “[”

Character : “)”

Input: “([)]”

Character : “(”

Character : “[”

Character : “)”

Character : “]”

Subroutine

aka:

We can use the stack to

so we can retrieve them

In MIPS, the stack grows

© 2019, Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in
any format for educational, non-commercial purposes. Please give me appropriate credit should you
choose to modify this resource. Thank you :)

Stacks and Subroutines Page 4 of 11 Computer Systems and Assembly

Register Review

$t0 - $t9
$s0 - $s7
Sa0 - $a3
SvO - Svi1
Sra
Ssp

Subroutine Diagram

© 2019, Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in
any format for educational, non-commercial purposes. Please give me appropriate credit should you
choose to modify this resource. Thank you :)

Stacks and Subroutines Page 5 of 11 Computer Systems and Assembly

Stack Usage
Push One Register

How to push a register value to the stack:

Example

Push $s@ to stack
ex/ $s0 = OxXAAAAAAAA

ADDRESS CONTENTS

$sp Ox7FFF FE©GO | OxDEADBEEF

Ox7FFF FDFC

Ox7FFF FDF8

OX7FFF FDF4

Pop One Register

How to pop a register value from the stack:

Example

Pop one word from stack

ADDRESS CONTENTS

Ox7FFF FE@GO | OxDEADBEEF

$sp Ox7FFF FDFC

Ox7FFF FDF8

Ox7FFF FDF4

© 2019, Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in
any format for educational, non-commercial purposes. Please give me appropriate credit should you
choose to modify this resource. Thank you :)

Stacks and Subroutines Page 6 of 11 Computer Systems and Assembly

Push Multiple Registers

How to push multiple registers to the stack:

Example

Push $s0, $s1, $s2 to stack

ex/ $s0 = OxAAAAAAAA ADDRESS CONTENTS
$s1 = oxBBBBBBBB g
s Ox7FFF FE@® | OxCOFFEEEE
$s2 = @XCCCCCCCC P X X

Ox7FFF FDFC

Ox7FFF FDF8

OX7FFF FDF4

One at a time:

Decrement $sp once:

© 2019, Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in
any format for educational, non-commercial purposes. Please give me appropriate credit should you
choose to modify this resource. Thank you :)

Stacks and Subroutines Page 7 of 11 Computer Systems and Assembly

Pop Multiple Registers

How to pop multiple registers from the stack:

Example

Pop 3 words from stack

ADDRESS CONTENTS

Ox7FFF FEQO | OxCOFFEEEE

OX7FFF FDFC | OXAAAAAAAA

Ox7FFF FDF8 | oxBBBBBBBB

$sp Ox7FFF FDF4 | excccccccc

One at a time:

Increment $sp once:

© 2019, Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in
any format for educational, non-commercial purposes. Please give me appropriate credit should you
choose to modify this resource. Thank you :)

Stacks and Subroutines Page 8 of 11

Computer Systems and Assembly

Jump Instructions

J:

Give an example of how to use this instruction

J

What does this instruction do?

How does this instruction affect the registers?

JAL:

Give an example of how to use this instruction

JAL

What does this instruction do?

How does this instruction affect the registers?

JALR:

Give an example of how to use this instruction

JALR

© 2019, Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in
any format for educational, non-commercial purposes. Please give me appropriate credit should you

choose to modify this resource. Thank you :)

Stacks and Subroutines Page 9 of 11 Computer Systems and Assembly

What does this instruction do?

How does this instruction affect the registers?

JR:

Give an example of how to use this instruction

JR

What does this instruction do?

How does this instruction affect the registers?

Examples
Basic Example
address of instruction time current pc ra pc
instruction (after instr) (after instr)
0x100 Main: NOP 1
0x104 JAL Subl 2
0x108 NOP 3
ox1ecC JAL Sub2 4
ox110 NOP 5
6
0x200 Subl: NOP 7
0x204 JR $ra 8
9
0x300 Sub2: NOP
0x304 JR $ra

© 2019, Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in
any format for educational, non-commercial purposes. Please give me appropriate credit should you
choose to modify this resource. Thank you :)

Stacks and Subroutines Page 10 of 11 Computer Systems and Assembly

Nested Subroutine

address of instruction time current pc ra pc
instruction (after instr) (after instr)
0x100 Main: NOP 1
0x104 JAL Sub2 2
0x108 NOP 3
4
0x200 Subl: NOP 5
0x204 JR $ra 6
7
0x300 Sub2: NOP 8
0x304 JAL Subl 9
0x308 NOP 10
0x30C NOP 11
ox310 JR $ra 12

Which subroutines are the callers?

Which are the callees?

Is there a problem with this code?

Callee Save Registers

Caller Save Registers

© 2019, Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in
any format for educational, non-commercial purposes. Please give me appropriate credit should you
choose to modify this resource. Thank you :)

Stacks and Subroutines Page 11 of 11 Computer Systems and Assembly

Callee Save Example

Use the stack to save Sra

address of instruction time pc ra pc memory contents
instruction (crnt (after (after address
instr) instr) instr) (in stack)
0x100 Main: NOP 1 OxFEQO
0x104 JAL Sub2 2
0x108 NOP 3
4
0x200 Subl: NOP 5
0x204 JR $ra 6
7

0x300 Sub2: NOP 8
0x304 9
0x308 10
0x30C JAL Subl 11
0x310 NOP 12
0x314 NOP 13
0x318 14
ox31C 15
0x310 JR $ra 16

17

18

© 2019, Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in
any format for educational, non-commercial purposes. Please give me appropriate credit should you
choose to modify this resource. Thank you :)

	Stacks and Subroutines
	Stack
	LIFO/FILO last in first out
	Push put item on stack
	Pop get last item from stack
	Airplane Luggage Example
	Matching Parentheses
	"()" -> return True
	"()[]{}" -> return True
	"(]" -> return False
	"([)]" -> return False
	"{[]}" -> return True
	Algorithm
	 If opening parenthesis (, [, {:
	 If closing parenthesis),], }:
	 If doesn’t match:

	Subroutine
	 subprograms, functions, methods, procedures in higher level languages
	 save register values
	 after a subroutine
	 down
	Register Review
	$t0 - $t9
	temporary registers - values can be altered when entering a subroutine; do not expect $t regs to have the same values after a subroutine call

	$s0 - $s7
	saved registers - should not be altered by subroutines; must be pushed at the beginning of a subroutine and popped at the end if used by subroutine; should have

	$a0 - $a3
	arguments to subroutines - only way to pass values into a subroutine

	$v0 - $v1
	used for return values from a subroutine; only way to pass values from a subroutine; also used in syscalls

	$ra
	Return address - a pointer to the address of the next instruction to execute when returning from a subprogram

	$sp
	stack pointer - register that contains the address of the last item that was pushed to the stack

	Subroutine Diagram

	$a0 --------->| |---------> $v0
	$a1 --------->| |---------> $v1

	Stack Usage
	Push One Register
	No “push” command - must decrement stack pointer then store word
	Example
	SUBI $sp $sp 4
	SW $s0 ($sp)
	
	ADDRESS
	CONTENTS

	Pop One Register
	No “pop” command - must load word, then increment stack pointer
	Example
	
	LW $s0 ($sp)
	ADDI $sp $sp 4
	ADDRESS
	CONTENTS

	Push Multiple Registers
	decrement $sp, store, decrement $sp, store, etc…
	
	OR
	
	decrement $sp once (4 * # regs to store), then store each reg w/offset
	Example
	
	ADDRESS
	CONTENTS

	0xAAAAAAAA
	0xBBBBBBBB
	$sp ➔
	0xCCCCCCCC
	SUBI $sp $sp 4
	SW $s0 ($sp)
	SUBI $sp $sp 4
	SW $s1 ($sp)
	SUBI $sp $sp 4
	SW $s2 ($sp)
	SUBI $sp $sp 12
	SW $s2 ($sp)
	SW $s1 ____($sp)
	SW $s0 ____($sp)

	Pop Multiple Registers
	lw, increment $sp, lw, increment $sp, etc...
	
	OR
	
	lw each reg w/offset, increment $sp once (4 * # regs to store)
	Example
	
	ADDRESS
	CONTENTS

	LW $s2 ($sp)
	ADDI $sp $sp 12
	LW $s1 ($sp)
	ADDI $sp $sp 12
	LW $s0 ($sp)
	ADDI $sp $sp 12
	LW $s0 ____($sp)
	LW $s1 ____($sp)
	LW $s2 ($sp)
	ADDI $sp $sp 12

	Jump Instructions
	used to enter and exit subroutines, change program flow
	 jump
	J: ​__
	 label
	jumps unconditionally to address indicated by label
	$pc = label
	
	 jump and link

	JAL: ​__
	 label
	jumps to the address of the label
	$ra = pc + 4 (stores the address of the next instruction after the jump in $ra)
	$pc = label
	 jump and link register

	JALR:​__
	 $t0
	jumps to the instruction with the address that’s in $t0
	$ra = pc + 4 (stores the address of the next instruction after the jump in $ra)
	$pc = $t0 ($t0 is register in instruction)
	 jump register

	JR:​__
	 $ra (most common use, you can also use any register)
	jumps to the instruction with the address that’s in $ra
	$pc = $ra

	Examples
	Basic Example
	address of instruction
	instruction
	
	time
	current pc
	ra
	(after instr)
	pc
	(after instr)
	100
	?
	104
	104
	108
	200
	200
	108
	204
	204
	108
	108
	108
	108
	10C
	10C
	110
	300
	300
	110
	304
	304
	110
	110
	110
	310
	114
	
	
	
	
	
	

	
	Nested Subroutine
	address of instruction
	instruction
	
	time
	current pc
	ra
	(after instr)
	pc
	(after instr)
	100
	?
	104
	104
	108
	300
	300
	108
	304
	304
	308
	200
	200
	308
	204
	204
	308
	308
	308
	308
	30C
	30C
	308
	310
	310
	308
	308
	308
	308
	30C
	30C
	308
	310
	310
	308
	308
	Which subroutines are the callers?
	Main, Sub2
	Which are the callees?
	Sub1, Sub2
	It enters an infinite loop because $ra is not saved when the program goes to Sub2

	Callee Save Registers
	caller may assume these registers were not changed by callee
	$ra, $s regs

	Caller Save Registers
	to ensure registers aren't modified by callee
	$t registers
	

	Callee Save Example
	Use the stack to save $ra
	address of instruction
	instruction
	
	time
	pc
	(crnt instr)
	ra
	(after instr)
	pc
	(after instr)
	memory address
	(in stack)
	contents
	100
	?
	104
	
	104
	108
	300
	0xFDFC
	108
	300
	108
	304
	0xFDF8
	
	304
	108
	308
	
	
	308
	108
	30C
	
	
	30C
	310
	200
	
	
	200
	310
	204
	
	
	204
	310
	310
	
	
	 SUBI $sp $sp 4
	310
	310
	314
	
	
	 SW $ra ($sp)
	314
	310
	318
	
	
	318
	108
	31C
	
	
	31C
	108
	310
	
	
	310
	108
	314
	
	
	 LW $ra ($sp)
	314
	108
	318
	
	
	 ADDI $sp $sp 4
	318
	108
	31C
	
	
	31C
	108
	310
	
	
	310
	108
	108
	
	
	108
	108
	10C
	
	

