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Stacks and Subroutines

Stack

data structure -

Airplane Luggage Example

TaTala —_— N

Matching Parentheses

Given a string containing just the characters '(', ")', '{', '}', '[' and '],
determine if the string contains all valid sets of parentheses.

Sample inputs / outputs:

Algorithm
Loop through elements in string:

If

Push onto stack

If

Pop last item from stack

If

Return False

Return True
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Input: “()”

Character :

f(())

Character :

f()))

Input: “{[]}”

Character : “{”

Character : “[” | |
||
| |
||

Character : “]” | |
||
| |
||

Character : “}” | |
||
| |
||

Input: “[)” | |
[ |

Character : “[” | |
| |

Character : “)”
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Input: “([)]”

Character : “[”

Character : “)”

Input: “([)]”

Character : “(”

Character : “[”

Character : “)”

Character : “]”

Subroutine

aka:

We can use the stack to

so we can retrieve them

In MIPS, the stack grows

© 2019, Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in
any format for educational, non-commercial purposes. Please give me appropriate credit should you
choose to modify this resource. Thank you :)



Stacks and Subroutines Page 4 of 11 Computer Systems and Assembly

Register Review

$t0 - $t9
$s0 - $s7
Sa0 - $a3
SvO - Svi1
Sra
Ssp

Subroutine Diagram
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Stack Usage
Push One Register

How to push a register value to the stack:

Example

Push $s@ to stack
ex/ $s0 = OxXAAAAAAAA

ADDRESS CONTENTS

$sp Ox7FFF FE©GO | OxDEADBEEF

Ox7FFF FDFC

Ox7FFF FDF8

OX7FFF FDF4

Pop One Register

How to pop a register value from the stack:

Example

Pop one word from stack

ADDRESS CONTENTS

Ox7FFF FE@GO | OxDEADBEEF

$sp Ox7FFF FDFC

Ox7FFF FDF8

Ox7FFF FDF4
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Push Multiple Registers

How to push multiple registers to the stack:

Example

Push $s0, $s1, $s2 to stack

ex/ $s0 = OxAAAAAAAA ADDRESS CONTENTS
$s1 = oxBBBBBBBB g
s Ox7FFF FE@® | OxCOFFEEEE
$s2 = @XCCCCCCCC P X X

Ox7FFF FDFC

Ox7FFF FDF8

OX7FFF FDF4

One at a time:

Decrement $sp once:
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Pop Multiple Registers

How to pop multiple registers from the stack:

Example

Pop 3 words from stack

ADDRESS CONTENTS

Ox7FFF FEQO | OxCOFFEEEE

OX7FFF FDFC | OXAAAAAAAA

Ox7FFF FDF8 | oxBBBBBBBB

$sp Ox7FFF FDF4 | excccccccc

One at a time:

Increment $sp once:
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Jump Instructions

J:

Give an example of how to use this instruction

J

What does this instruction do?

How does this instruction affect the registers?

JAL:

Give an example of how to use this instruction

JAL

What does this instruction do?

How does this instruction affect the registers?

JALR:

Give an example of how to use this instruction

JALR
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What does this instruction do?

How does this instruction affect the registers?

JR:

Give an example of how to use this instruction

JR

What does this instruction do?

How does this instruction affect the registers?

Examples
Basic Example
address of instruction time current pc ra pc
instruction (after instr)  (after instr)
0x100 Main: NOP 1
0x104 JAL Subl 2
0x108 NOP 3
ox1ecC JAL Sub2 4
ox110 NOP 5
6
0x200 Subl: NOP 7
0x204 JR  $ra 8
9
0x300 Sub2: NOP
0x304 JR $ra
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Nested Subroutine

address of instruction time current pc ra pc
instruction (after instr)  (after instr)
0x100 Main: NOP 1
0x104 JAL Sub2 2
0x108 NOP 3
4
0x200 Subl: NOP 5
0x204 JR $ra 6
7
0x300 Sub2: NOP 8
0x304 JAL Subl 9
0x308 NOP 10
0x30C NOP 11
ox310 JR  $ra 12

Which subroutines are the callers?

Which are the callees?

Is there a problem with this code?

Callee Save Registers

Caller Save Registers
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Callee Save Example

Use the stack to save Sra

address of instruction time pc ra pc memory  contents
instruction (crnt (after (after address
instr) instr) instr) (in stack)
0x100 Main: NOP 1 OxFEQO
0x104 JAL Sub2 2
0x108 NOP 3
4
0x200 Subl: NOP 5
0x204 JR $ra 6
7

0x300 Sub2: NOP 8
0x304 9
0x308 10
0x30C JAL Subl 11
0x310 NOP 12
0x314 NOP 13
0x318 14
ox31C 15
0x310 JR $ra 16

17

18
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