

Stacks and Subroutines Page 1 of 11 Computer Systems and Assembly

Stacks and Subroutines

Stack

LIFO/FILO last in first out
__________ data structure - ________________ ___________ ________________ ___________

Push put item on stack
__________ - __

Pop get last item from stack
__________ - __

Airplane Luggage Example

 \
 \

Matching Parentheses

Given a string containing just the characters '(', ')', '{', '}', '[' and ']',
determine if the string contains all valid sets of parentheses.

Sample inputs / outputs:
"()" -> return True
"()[]{}" -> return True
"(]" -> return False
"([)]" -> return False
"{[]}" -> return True

Algorithm

Loop through elements in string:
 If opening parenthesis (, [, {:
 If __:
 Push onto stack
 If closing parenthesis),], }:
 If __:
 Pop last item from stack
 If doesn’t match:
 If __:
 Return False

Return True

© 2019, Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in

any format for educational, non-commercial purposes. Please give me appropriate credit should you

choose to modify this resource. Thank you :)

Stacks and Subroutines Page 2 of 11 Computer Systems and Assembly

Input: “()”

Character : “(”

Character : “)”

| |
|_____|
| |
|_____|

| |
|_____|
| |
|_____|

Input: “{[]}”

Character : “{”

Character : “[”

Character : “]”

Character : “}”

| |
|_____|
| |
|_____|

| |
|_____|
| |
|_____|

| |
|_____|
| |
|_____|

| |
|_____|
| |
|_____|

Input: “[)”

Character : “[”

Character : “)”

| |
|_____|
| |
|_____|

| |
|_____|
| |
|_____|

© 2019, Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in

any format for educational, non-commercial purposes. Please give me appropriate credit should you

choose to modify this resource. Thank you :)

Stacks and Subroutines Page 3 of 11 Computer Systems and Assembly

Input: “([)]”

Character : “[”

Character : “)”

| |
|_____|
| |
|_____|

| |
|_____|
| |
|_____|

Input: “([)]”

Character : “(”

Character : “[”

Character : “)”

Character : “]”

| |
|_____|
| |
|_____|

| |
|_____|
| |
|_____|

| |
|_____|
| |
|_____|

| |
|_____|
| |
|_____|

Subroutine

 subprograms, functions, methods, procedures in higher level languages
aka: __

 save register values
We can use the stack to ___

 after a subroutine
so we can retrieve them ___

 down
In MIPS, the stack grows ____________________

© 2019, Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in

any format for educational, non-commercial purposes. Please give me appropriate credit should you

choose to modify this resource. Thank you :)

Stacks and Subroutines Page 4 of 11 Computer Systems and Assembly

Register Review

$t0 - $t9

temporary registers - values can be altered when entering a subroutine; do not
expect $t regs to have the same values after a subroutine call

$s0 - $s7

saved registers - should not be altered by subroutines; must be pushed at the
beginning of a subroutine and popped at the end if used by subroutine; should have

$a0 - $a3

arguments to subroutines - only way to pass values into a subroutine

$v0 - $v1

used for return values from a subroutine; only way to pass values from a
subroutine; also used in syscalls

$ra

Return address - a pointer to the address of the next instruction to execute when
returning from a subprogram

$sp

stack pointer - register that contains the address of the last item that was pushed
to the stack

Subroutine Diagram

$a0 --------->| |---------> $v0
$a1 --------->| |---------> $v1

© 2019, Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in

any format for educational, non-commercial purposes. Please give me appropriate credit should you

choose to modify this resource. Thank you :)

Stacks and Subroutines Page 5 of 11 Computer Systems and Assembly

Stack Usage

Push One Register

How to push a register value to the stack:

No “push” command - must decrement stack pointer then store word

Example

Push $s0 to stack
ex/ $s0 = 0xAAAAAAAA

SUBI $sp $sp 4
SW $s0 ($sp)

 ADDRESS CONTENTS

$sp
➔

0x7FFF FE00 0xDEADBEEF

 0x7FFF FDFC

 0x7FFF FDF8

 0x7FFF FDF4

Pop One Register

How to pop a register value from the stack:

No “pop” command - must load word, then increment stack pointer

Example

Pop one word from stack

LW $s0 ($sp)
ADDI $sp $sp 4

 ADDRESS CONTENTS

 0x7FFF FE00 0xDEADBEEF

$sp
➔

0x7FFF FDFC

 0x7FFF FDF8

 0x7FFF FDF4

© 2019, Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in

any format for educational, non-commercial purposes. Please give me appropriate credit should you

choose to modify this resource. Thank you :)

Stacks and Subroutines Page 6 of 11 Computer Systems and Assembly

Push Multiple Registers

How to push multiple registers to the stack:

decrement $sp, store, decrement $sp, store, etc…

OR

decrement $sp once (4 * # regs to store), then store each reg w/offset

Example

Push $s0, $s1, $s2 to stack

ex/ $s0 = 0xAAAAAAAA​
 $s1 = 0xBBBBBBBB​
 $s2 = 0xCCCCCCCC

 ADDRESS CONTENTS

$sp
➔

0x7FFF FE00 0xC0FFEEEE

 0x7FFF FDFC 0xAAAAAAAA

 0x7FFF FDF8 0xBBBBBBBB

$sp
➔

0x7FFF FDF4 0xCCCCCCCC

One at a time:

SUBI $sp $sp 4
SW $s0 ($sp)
SUBI $sp $sp 4
SW $s1 ($sp)
SUBI $sp $sp 4
SW $s2 ($sp)

Decrement $sp once:

SUBI $sp $sp 12
SW $s2 ($sp)
SW $s1 ____($sp)
SW $s0 ____($sp)

© 2019, Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in

any format for educational, non-commercial purposes. Please give me appropriate credit should you

choose to modify this resource. Thank you :)

Stacks and Subroutines Page 7 of 11 Computer Systems and Assembly

Pop Multiple Registers

How to pop multiple registers from the stack:

lw, increment $sp, lw, increment $sp, etc...

OR

lw each reg w/offset, increment $sp once (4 * # regs to store)

Example

Pop 3 words from stack

 ADDRESS CONTENTS

 0x7FFF FE00 0xC0FFEEEE

 0x7FFF FDFC 0xAAAAAAAA

 0x7FFF FDF8 0xBBBBBBBB

$sp
➔

0x7FFF FDF4 0xCCCCCCCC

One at a time:

LW $s2 ($sp)
ADDI $sp $sp 12
LW $s1 ($sp)
ADDI $sp $sp 12
LW $s0 ($sp)
ADDI $sp $sp 12

Increment $sp once:

© 2019, Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in

any format for educational, non-commercial purposes. Please give me appropriate credit should you

choose to modify this resource. Thank you :)

Stacks and Subroutines Page 8 of 11 Computer Systems and Assembly

LW $s0 ____($sp)
LW $s1 ____($sp)
LW $s2 ($sp)
ADDI $sp $sp 12

Jump Instructions

used to enter and exit subroutines, change program flow

 jump
J: ​ __

Give an example of how to use this instruction
 label
J ______________________________

What does this instruction do?

jumps unconditionally to address indicated by label

How does this instruction affect the registers?

$pc = label

 jump and link
JAL: ​ __

Give an example of how to use this instruction
 label
JAL ______________________________

What does this instruction do?

jumps to the address of the label

How does this instruction affect the registers?

$ra = pc + 4 (stores the address of the next instruction after the jump in $ra)
$pc = label

 jump and link register
JALR:​ __

Give an example of how to use this instruction
 $t0
JALR ______________________________

© 2019, Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in

any format for educational, non-commercial purposes. Please give me appropriate credit should you

choose to modify this resource. Thank you :)

Stacks and Subroutines Page 9 of 11 Computer Systems and Assembly

What does this instruction do?

jumps to the instruction with the address that’s in $t0

How does this instruction affect the registers?

$ra = pc + 4 (stores the address of the next instruction after the jump in $ra)
$pc = $t0 ($t0 is register in instruction)

 jump register
JR:​ __

Give an example of how to use this instruction
 $ra (most common use, you can also use any register)
JR ______________________________

What does this instruction do?

jumps to the instruction with the address that’s in $ra

How does this instruction affect the registers?
$pc = $ra

Examples

Basic Example

address of

instruction

instruction time current pc ra

(after instr)

pc

(after instr)

0x100 Main: NOP 1 100 ? 104

0x104 JAL Sub1 2 104 108 200

0x108 NOP 3 200 108 204

0x10C JAL Sub2 4 204 108 108

0x110 NOP 5 108 108 10C

... ... 6 10C 110 300

0x200 Sub1: NOP 7 300 110 304

0x204 JR $ra 8 304 110 110

... ... 9 110 310 114

0x300 Sub2: NOP

0x304 JR $ra

© 2019, Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in

any format for educational, non-commercial purposes. Please give me appropriate credit should you

choose to modify this resource. Thank you :)

Stacks and Subroutines Page 10 of 11 Computer Systems and Assembly

Nested Subroutine

address of

instruction

instruction time current pc ra

(after instr)

pc

(after instr)

0x100 Main: NOP 1 100 ? 104

0x104 JAL Sub2 2 104 108 300

0x108 NOP 3 300 108 304

... ... 4 304 308 200

0x200 Sub1: NOP 5 200 308 204

0x204 JR $ra 6 204 308 308

... ... 7 308 308 30C

0x300 Sub2: NOP 8 30C 308 310

0x304 JAL Sub1 9 310 308 308

0x308 NOP 10 308 308 30C

0x30C NOP 11 30C 308 310

0x310 JR $ra 12 310 308 308

Which subroutines are the callers?
Main, Sub2
Which are the callees?
Sub1, Sub2

Is there a problem with this code?
It enters an infinite loop because $ra is not saved when the program goes to Sub2

Callee Save Registers

caller may assume these registers were not changed by callee
$ra, $s regs

Caller Save Registers

to ensure registers aren't modified by callee
$t registers

© 2019, Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in

any format for educational, non-commercial purposes. Please give me appropriate credit should you

choose to modify this resource. Thank you :)

Stacks and Subroutines Page 11 of 11 Computer Systems and Assembly

Callee Save Example

Use the stack to save $ra

address of

instruction

instruction time pc

(crnt

instr)

ra

(after

instr)

pc

(after

instr)

memory

address

(in stack)

contents

0x100 Main: NOP 1 100 ? 104 0xFE00

0x104 JAL Sub2 2 104 108 300 0xFDFC 108

0x108 NOP 3 300 108 304 0xFDF8

... ... 4 304 108 308

0x200 Sub1: NOP 5 308 108 30C

0x204 JR $ra 6 30C 310 200

... ... 7 200 310 204

0x300 Sub2: NOP 8 204 310 310

0x304 SUBI $sp $sp 4 9 310 310 314

0x308 SW $ra ($sp) 10 314 310 318

0x30C JAL Sub1 11 318 108 31C

0x310 NOP 12 31C 108 310

0x314 NOP 13 310 108 314

0x318 LW $ra ($sp) 14 314 108 318

0x31C ADDI $sp $sp 4 15 318 108 31C

0x310 JR $ra 16 31C 108 310

... ... 17 310 108 108

 18 108 108 10C

© 2019, Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in

any format for educational, non-commercial purposes. Please give me appropriate credit should you

choose to modify this resource. Thank you :)

	Stacks and Subroutines
	Stack
	LIFO/FILO last in first out
	Push put item on stack
	Pop get last item from stack
	Airplane Luggage Example
	Matching Parentheses
	"()" -> return True
	"()[]{}" -> return True
	"(]" -> return False
	"([)]" -> return False
	"{[]}" -> return True
	Algorithm
	 If opening parenthesis (, [, {:
	 If closing parenthesis),], }:
	 If doesn’t match:

	Subroutine
	 subprograms, functions, methods, procedures in higher level languages
	 save register values
	 after a subroutine
	 down
	Register Review
	$t0 - $t9
	temporary registers - values can be altered when entering a subroutine; do not expect $t regs to have the same values after a subroutine call

	$s0 - $s7
	saved registers - should not be altered by subroutines; must be pushed at the beginning of a subroutine and popped at the end if used by subroutine; should have

	$a0 - $a3
	arguments to subroutines - only way to pass values into a subroutine

	$v0 - $v1
	used for return values from a subroutine; only way to pass values from a subroutine; also used in syscalls

	$ra
	Return address - a pointer to the address of the next instruction to execute when returning from a subprogram

	$sp
	stack pointer - register that contains the address of the last item that was pushed to the stack

	Subroutine Diagram

	$a0 --------->| |---------> $v0
	$a1 --------->| |---------> $v1

	Stack Usage
	Push One Register
	No “push” command - must decrement stack pointer then store word
	Example
	SUBI $sp $sp 4
	SW $s0 ($sp)
	
	ADDRESS
	CONTENTS

	Pop One Register
	No “pop” command - must load word, then increment stack pointer
	Example
	
	LW $s0 ($sp)
	ADDI $sp $sp 4
	ADDRESS
	CONTENTS

	Push Multiple Registers
	decrement $sp, store, decrement $sp, store, etc…
	
	OR
	
	decrement $sp once (4 * # regs to store), then store each reg w/offset
	Example
	
	ADDRESS
	CONTENTS

	0xAAAAAAAA
	0xBBBBBBBB
	$sp ➔
	0xCCCCCCCC
	SUBI $sp $sp 4
	SW $s0 ($sp)
	SUBI $sp $sp 4
	SW $s1 ($sp)
	SUBI $sp $sp 4
	SW $s2 ($sp)
	SUBI $sp $sp 12
	SW $s2 ($sp)
	SW $s1 ____($sp)
	SW $s0 ____($sp)

	Pop Multiple Registers
	lw, increment $sp, lw, increment $sp, etc...
	
	OR
	
	lw each reg w/offset, increment $sp once (4 * # regs to store)
	Example
	
	ADDRESS
	CONTENTS

	LW $s2 ($sp)
	ADDI $sp $sp 12
	LW $s1 ($sp)
	ADDI $sp $sp 12
	LW $s0 ($sp)
	ADDI $sp $sp 12
	LW $s0 ____($sp)
	LW $s1 ____($sp)
	LW $s2 ($sp)
	ADDI $sp $sp 12

	Jump Instructions
	used to enter and exit subroutines, change program flow
	 jump
	J: ​__
	 label
	jumps unconditionally to address indicated by label
	$pc = label
	
	 jump and link

	JAL: ​__
	 label
	jumps to the address of the label
	$ra = pc + 4 (stores the address of the next instruction after the jump in $ra)
	$pc = label
	 jump and link register

	JALR:​__
	 $t0
	jumps to the instruction with the address that’s in $t0
	$ra = pc + 4 (stores the address of the next instruction after the jump in $ra)
	$pc = $t0 ($t0 is register in instruction)
	 jump register

	JR:​__
	 $ra (most common use, you can also use any register)
	jumps to the instruction with the address that’s in $ra
	$pc = $ra

	Examples
	Basic Example
	address of instruction
	instruction
	
	time
	current pc
	ra
	(after instr)
	pc
	(after instr)
	100
	?
	104
	104
	108
	200
	200
	108
	204
	204
	108
	108
	108
	108
	10C
	10C
	110
	300
	300
	110
	304
	304
	110
	110
	110
	310
	114
	
	
	
	
	
	

	
	Nested Subroutine
	address of instruction
	instruction
	
	time
	current pc
	ra
	(after instr)
	pc
	(after instr)
	100
	?
	104
	104
	108
	300
	300
	108
	304
	304
	308
	200
	200
	308
	204
	204
	308
	308
	308
	308
	30C
	30C
	308
	310
	310
	308
	308
	308
	308
	30C
	30C
	308
	310
	310
	308
	308
	Which subroutines are the callers?
	Main, Sub2
	Which are the callees?
	Sub1, Sub2
	It enters an infinite loop because $ra is not saved when the program goes to Sub2

	Callee Save Registers
	caller may assume these registers were not changed by callee
	$ra, $s regs

	Caller Save Registers
	to ensure registers aren't modified by callee
	$t registers
	

	Callee Save Example
	Use the stack to save $ra
	address of instruction
	instruction
	
	time
	pc
	(crnt instr)
	ra
	(after instr)
	pc
	(after instr)
	memory address
	(in stack)
	contents
	100
	?
	104
	
	104
	108
	300
	0xFDFC
	108
	300
	108
	304
	0xFDF8
	
	304
	108
	308
	
	
	308
	108
	30C
	
	
	30C
	310
	200
	
	
	200
	310
	204
	
	
	204
	310
	310
	
	
	 SUBI $sp $sp 4
	310
	310
	314
	
	
	 SW $ra ($sp)
	314
	310
	318
	
	
	318
	108
	31C
	
	
	31C
	108
	310
	
	
	310
	108
	314
	
	
	 LW $ra ($sp)
	314
	108
	318
	
	
	 ADDI $sp $sp 4
	318
	108
	31C
	
	
	31C
	108
	310
	
	
	310
	108
	108
	
	
	108
	108
	10C
	
	

