

MIPS Addressing Modes Page 1 of 10 Computer Systems and Assembly

MIPS Addressing Modes

Data Movement Instructions

In these instructions, assume rs is a register that contains an address.

INSTRUCTION SYNTAX DESCRIPTION

Load Word LW rt (rs) ➔​ Go to the memory address stored in rs.
➔​ Get 4 bytes of data, starting from the

memory address in rs
➔​ Load data into register rt
➔​ Register rs must be word aligned

Load Half LH rt (rs) ➔​ Go to the memory address stored in rs.
➔​ Get 2 bytes of data, starting from the

memory address in rs
➔​ Load data into least significant 2 bytes

of register rt
➔​ Sign extend to fill the rest of the bits

in register rt
➔​ Register rs must be half word aligned

Load Half Unsigned LHU rt (rs) ➔​ Go to the memory address stored in rs.
➔​ Get 2 bytes of data, starting from the

memory address in rs
➔​ Load data into least significant 2 bytes

of register rt
➔​ Zero extend to fill the rest of the bits

in register rt
➔​ Register rs must be half word aligned

Load Byte LB rt (rs) ➔​ Go to the memory address stored in rs.
➔​ Get 1 byte of data
➔​ Load data into least significant byte of

register rt
➔​ Sign extend to fill the rest of the bits

in register rt

Load Byte Unsigned LBU rt (rs) ➔​ Go to the memory address stored in rs.
➔​ Get 1 byte of data
➔​ Load data into least significant byte of

register rt
➔​ Zero extend to fill the rest of the bits

in register rt

© 2019, Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in

any format for educational, non-commercial purposes. Please give me appropriate credit should you

choose to modify this resource. Thank you :)

MIPS Addressing Modes Page 2 of 10 Computer Systems and Assembly

INSTRUCTION SYNTAX DESCRIPTION

Store Word SW rt (rs) ➔​ Store data in rt starting at memory
address rs

➔​ Register rs must be word aligned

Store Half SH rt (rs) ➔​ Store least significant 2 bytes of data in
rt starting at memory address rs

➔​ Register rs must be half word aligned

Store Byte SB rt (rs) ➔​ Store least significant byte of data in rt
starting at memory address rs

Addressing Modes

Ways of accessing operands

 Register direct
1 - ___

 immediate
2 - ___

 Register indirect / Base + offset/displacement
3 - ___

 PC-relative
4 - ___

 Pseudo-direct
5 - ___

Register Direct

Operands are in registers.

 INST rd rs rt
Syntax: ___

 OR $t5 $t3 $t8
e.g. ___

Immediate

Operand is a constant in the instruction.

 INST rt rs immediate
Syntax: ___

 AND $t4 $t1 0x000FF000
e.g. ___

© 2019, Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in

any format for educational, non-commercial purposes. Please give me appropriate credit should you

choose to modify this resource. Thank you :)

MIPS Addressing Modes Page 3 of 10 Computer Systems and Assembly

Register Indirect / Base + Offset / Displacement

Register Indirect

Memory address is contained in rs.

 INST rt (rs)
Syntax: ___

What is the value of $t0?

ADDIU $t1 $zero 0x1010
LW $t0 ($t1)
 FE ED BA BE
$t0 = 0x ______ ______ ______ ______

ADDRESS CONTENTS

0x1013 0xFE

0x1012 0xED

0x1011 0xBA

0x1010 0xBE

What is the value of $t0?

ADDIU $t6 $zero 0x1010
LH $t0 ($t6)

$t0 =
11111111 11111111 10111010 10111110
________ ________ ________ ________

 FF FF BA BE
$t0 = 0x ______ ______ ______ ______

ADDRESS CONTENTS

0x1013 0xFE

0x1012 0xED

0x1011 0xBA

0x1010 0xBE

Base + Offset / Displacement

 INST rt immed(rs)
Syntax: ___

 Effective address
Compute __ by summing

Contents of register with constant in instruction

 Memory location of operand
Effective address - ___

 rs + immed

 SW $s0 12($t4), EA = $t4 + 12
e.g. __

© 2019, Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in

any format for educational, non-commercial purposes. Please give me appropriate credit should you

choose to modify this resource. Thank you :)

MIPS Addressing Modes Page 4 of 10 Computer Systems and Assembly

Example, Base + Offset/Displacement

What is the value of $t0?

ADDIU $t3 $zero 0x1010
LH $t0 2($t3)
 $t3 + 2
effective address: ___________________
0x1010 + 0x2 = 0x1012

$t0 =
11111111 11111111 11111110 11101101
________ ________ ________ ________

 FE FF FE ED
$t0 = 0x ______ ______ ______ ______

ADDRESS CONTENTS

0x1013 0xFE

0x1012 0xED

0x1011 0xBA

0x1010 0xBE

What is the value of $t0?

ADDIU $t7 $zero 0x1014
LHU $t0 -4($t7)
 $t7 - 4
effective address: ___________________
0x1014 - 4 = 0x1010

$t0 =
00000000 00000000 10111010 10111110
________ ________ ________ ________

 00 00 BA BE
$t0 = 0x ______ ______ ______ ______

ADDRESS CONTENTS

0x1013 0xFE

0x1012 0xED

0x1011 0xBA

0x1010 0xBE

What does memory look like after these
instructions?

ADDIU $t5 $zero 0x1015
ADDIU $t0 $zero 0x1234​
SH $t0 -3($t5)
 $t5 - 3
effective address: ___________________
0x1015 - 3 = 0x1012

Is there a memory alignment error?
No because the effective address is ½
word aligned.

ADDRESS CONTENTS

BEFORE AFTER

0x1015 0x87 0x87

0x1014 0x65 0x65

0x1013 0xFE 0x12

0x1012 0xED 0x34

0x1011 0xBA 0xBA

0x1010 0xBE 0xBE

© 2019, Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in

any format for educational, non-commercial purposes. Please give me appropriate credit should you

choose to modify this resource. Thank you :)

MIPS Addressing Modes Page 5 of 10 Computer Systems and Assembly

What does memory look like after these
instructions?

ADDIU $t2 $zero 0x1012
ADDIU $t0 $zero 0xEFAA​
SB $t0 1($t2)
 $t2 + 1
effective address: ___________________
0x1012 + 1 = 0x1012

Is there a memory alignment error?
No because the effective address is byte
aligned, by definition of a memory
address.

ADDRESS CONTENTS

BEFORE AFTER

0x1015 0x87 0x87

0x1014 0x65 0x65

0x1013 0xFE 0xAA

0x1012 0xED 0xED

0x1011 0xBA 0xBA

0x1010 0xBE 0xBE

What does memory look like after these
instructions?

ADDIU $t4 $zero 0x1015
ADDIU $t0 $zero 0x1234​
SW $t0 -3($t4)
 $t5 - 3
effective address: ___________________
0x1015 - 3 = 0x1012

Is there a memory alignment error?
Yes because the effective address not
word aligned.

ADDRESS CONTENTS

BEFORE AFTER

0x1015 0x87 0x87

0x1014 0x65 0x65

0x1013 0xFE 0xFE

0x1012 0xED 0xED

0x1011 0xBA 0xBA

0x1010 0xBE 0xBE

© 2019, Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in

any format for educational, non-commercial purposes. Please give me appropriate credit should you

choose to modify this resource. Thank you :)

MIPS Addressing Modes Page 6 of 10 Computer Systems and Assembly

Example

What is in $t0 after the following instructions? Assume little endian memory storage.

1: ori $t0 $zero 0xA5C11000
2: addi $t1 $zero 0x10000
3: sw $t0 ($t1)

4: lb $t0 1($t1)
5: sh $t0 2($t1)
6: lw $t0 ($t1)

ori $t0 $zero 0xA5C11000

$t0:

$t1:

ADDRESS CONTENTS

addi $t1 $zero 0x10010000

$t0:

$t1:

ADDRESS CONTENTS

sw $t0 ($t1)

$t0:

$t1:

ADDRESS CONTENTS

lb $t0 1($t1)

$t0:

$t1:

ADDRESS CONTENTS

sh $t0 2($t1)

$t0:

$t1:

ADDRESS CONTENTS

lw $t0 ($t1)

$t0:

$t1:

ADDRESS CONTENTS

© 2019, Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in

any format for educational, non-commercial purposes. Please give me appropriate credit should you

choose to modify this resource. Thank you :)

MIPS Addressing Modes Page 7 of 10 Computer Systems and Assembly

Example

The following program is executed. What is the state of memory and registers after
each instruction? If unknown, write ‘?’ Assume little endian memory storage.

1: li $t1 0x10010004​
2: li $t0 0xC0FFEEEE​
3: sw $t0 ($t1)

4: lb $t0 3($t1)​
5: sh $t0 2($t1)​
6: lw $t0 ($t1)

li $t1 0x10010004

$t0:

$t1:

ADDRESS CONTENTS

li $t0 0xC0FFEEEE

$t0:

$t1:

ADDRESS CONTENTS

sw $t0 ($t1)

$t0:

$t1:

ADDRESS CONTENTS

lb $t0 3($t1)

$t0:

$t1:

ADDRESS CONTENTS

sh $t0 2($t1)

$t0:

$t1:

ADDRESS CONTENTS

lw $t0 ($t1)

$t0:

$t1:

ADDRESS CONTENTS

© 2019, Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in

any format for educational, non-commercial purposes. Please give me appropriate credit should you

choose to modify this resource. Thank you :)

MIPS Addressing Modes Page 8 of 10 Computer Systems and Assembly

PC-Relative

Used in branch instructions.

 address of next instruction to execute if branch is taken
Branch target address: __

BTA = sum of PC of next instruction (if branch not taken) + offset.

BTA = pc + 4 + offset

 difference between BTA and address of what would be next
Offset: ___

instruction (if branch not taken) => offset = BTA - (pc + 4)

The branch instruction address and branch target address will always be

word aligned (divisible by 4)

 word aligned (divisible by 4)
So, the offset will always be ___

 branch instruction address: 0x1000, branch target address: 0x1094, offset = 1
e.g. __

offset = 0x1094 - (0x1000 + 4) = 0x90

 will always be 0
The least significant 2 bits of the offset __

 the instruction itself does not store the least significant 2 bits
So, ___

Instruction Format

opcode rs rt offset (w/o least sig 2 bits)

© 2019, Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in

any format for educational, non-commercial purposes. Please give me appropriate credit should you

choose to modify this resource. Thank you :)

MIPS Addressing Modes Page 9 of 10 Computer Systems and Assembly

Example: Encode BNE $t0 $t1 LOOP

Instruction Format

op rs rt offset

Opcode for BNE: Rs: Rt:
0x05 = 000101 $t0 = $8 = 01000 $t1 = $9 = 01001

Determine offset
 0x0040 0010
Branch instruction address:

 0x0040 0008
Branch target address (BTA):
BTA = pc + 4 + offset
=> offset = BTA - (pc + 4)

Calculate offset:
offset = BTA - (pc + 4)
Offset = 0x0040 0008 - (0x0040 0010 + 4) = -12, C = 0000000000001100

Convert offset to 2SC:
0000000000001100
1111111111110011
1111111111110100

To encode in instruction, remove last 2 bits for immediate value:
11 1111 1111 1111 0100
 1111 1111 1111 1101
0xFFFD

000101 01000 01001 11111111111101

0x1509FFFD

© 2019, Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in

any format for educational, non-commercial purposes. Please give me appropriate credit should you

choose to modify this resource. Thank you :)

MIPS Addressing Modes Page 10 of 10 Computer Systems and Assembly

Pseudo Direct

Used in jump instructions

opcode target

 (pc + 4)[31:28] concat (target << 2)
jump target address = ___

© 2019, Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in

any format for educational, non-commercial purposes. Please give me appropriate credit should you

choose to modify this resource. Thank you :)

	MIPS Addressing Modes
	Data Movement Instructions
	INSTRUCTION
	SYNTAX
	DESCRIPTION
	LW rt (rs)
	LH rt (rs)
	LHU rt (rs)
	LB rt (rs)
	LBU rt (rs)
	INSTRUCTION
	SYNTAX
	DESCRIPTION

	SW rt (rs)
	SH rt (rs)
	SB rt (rs)

	Addressing Modes
	 Register direct
	 immediate
	 Register indirect / Base + offset/displacement
	 PC-relative
	 Pseudo-direct
	Register Direct
	 INST rd rs rt
	 OR $t5 $t3 $t8

	Immediate
	 INST rt rs immediate
	 AND $t4 $t1 0x000FF000

	Register Indirect / Base + Offset / Displacement
	Register Indirect
	 INST rt (rs)
	 FE ED BA BE
	ADDRESS
	CONTENTS

	11111111 11111111 10111010 10111110
	
	 FF FF BA BE
	ADDRESS
	CONTENTS

	Base + Offset / Displacement
	 INST rt immed(rs)
	 Effective address
	Contents of register with constant in instruction
	 Memory location of operand
	 rs + immed
	 SW $s0 12($t4), EA = $t4 + 12

	
	Example, Base + Offset/Displacement
	 $t3 + 2
	0x1010 + 0x2 = 0x1012
	11111111 11111111 11111110 11101101
	 FE FF FE ED
	ADDRESS
	CONTENTS

	 $t7 - 4
	0x1014 - 4 = 0x1010
	00000000 00000000 10111010 10111110
	
	 00 00 BA BE
	ADDRESS
	CONTENTS

	 $t5 - 3
	0x1015 - 3 = 0x1012
	No because the effective address is ½ word aligned.
	ADDRESS
	 CONTENTS
	BEFORE
	AFTER

	0x87
	0x65
	0x12
	0x34
	0xBA
	0xBE
	 $t2 + 1
	0x1012 + 1 = 0x1012
	No because the effective address is byte aligned, by definition of a memory address.
	ADDRESS
	 CONTENTS
	BEFORE
	AFTER

	0x87
	0x65
	0xAA
	0xED
	0xBA
	0xBE
	 $t5 - 3
	0x1015 - 3 = 0x1012
	Yes because the effective address not word aligned.
	ADDRESS
	 CONTENTS
	BEFORE
	AFTER

	0x87
	0x65
	0xFE
	0xED
	0xBA
	0xBE

	
	
	Example
	ori $t0 $zero 0xA5C11000
	
	
	
	

	addi $t1 $zero 0x10010000
	sw $t0 ($t1)
	lb $t0 1($t1)
	sh $t0 2($t1)
	lw $t0 ($t1)
	Example

	li $t1 0x10010004
	li $t0 0xC0FFEEEE
	sw $t0 ($t1)
	lb $t0 3($t1)
	sh $t0 2($t1)
	lw $t0 ($t1)
	PC-Relative
	 address of next instruction to execute if branch is taken
	BTA = sum of PC of next instruction (if branch not taken) + offset.
	BTA = pc + 4 + offset
	 difference between BTA and address of what would be next
	instruction (if branch not taken) => offset = BTA - (pc + 4)
	word aligned (divisible by 4)
	 word aligned (divisible by 4)
	 branch instruction address: 0x1000, branch target address: 0x1094, offset = 1
	offset = 0x1094 - (0x1000 + 4) = 0x90
	 will always be 0
	 the instruction itself does not store the least significant 2 bits
	
	
	Instruction Format
	opcode
	rs
	rt
	offset (w/o least sig 2 bits)

	
	Example: Encode BNE $t0 $t1 LOOP
	op
	rs
	rt
	offset
	0x05 = 000101 $t0 = $8 = 01000 $t1 = $9 = 01001
	 0x0040 0010
	 0x0040 0008
	BTA = pc + 4 + offset
	=> offset = BTA - (pc + 4)
	offset = BTA - (pc + 4)
	Offset = 0x0040 0008 - (0x0040 0010 + 4) = -12, C = 0000000000001100
	Convert offset to 2SC:
	0000000000001100
	1111111111110011
	1111111111110100
	11 1111 1111 1111 0100
	 1111 1111 1111 1101
	0xFFFD

	
	000101
	01000
	01001
	11111111111101
	0x1509FFFD

	Pseudo Direct
	 (pc + 4)[31:28] concat (target << 2)

