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MIPS Addressing Modes

Data Movement Instructions
In these instructions, assume rs is a register that contains an address.

INSTRUCTION SYNTAX DESCRIPTION
Load Word -> Go to the memory address stored in rs.
-> Get 4 bytes of data, starting from the
memory address in rs
=> Load data into register rt
-> Register rs must be word aligned
Load Half => Go to the memory address stored in rs.
-> Get 2 bytes of data, starting from the
memory address in rs
=> Load data into least significant 2 bytes
of register rt
=> Sign extend to fill the rest of the bits
in register rt
=> Register rs must be half word aligned
Load Half Unsigned -> Go to the memory address stored in rs.
-> Get 2 bytes of data, starting from the
memory address in rs
=> Load data into least significant 2 bytes
of register rt
-> Zero extend to fill the rest of the bits
in register rt
-> Register rs must be half word aligned
Load Byte -> Go to the memory address stored in rs.
-> Get 1 byte of data
=> Load data into least significant byte of
register rt
=> Sign extend to fill the rest of the bits
in register rt
Load Byte Unsigned -> Go to the memory address stored in rs.
-> Get 1 byte of data
=> Load data into least significant byte of
register rt
-> Zero extend to fill the rest of the bits
in register rt
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INSTRUCTION SYNTAX DESCRIPTION
Store Word -> Store data in rt starting at memory
address rs
-> Register rs must be word aligned
Store Half => Store least significant 2 bytes of data in
rt starting at memory address rs
-> Register rs must be half word aligned
Store Byte -> Store least significant byte of data in rt
starting at memory address rs
Addressing Modes

Ways of accessing operands

5 -

Register Direct

Operands are in registers.

Syntax:

e.g.

Immediate

Operand is a constant in the instruction.

Syntax:

e.g.
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Register Indirect / Base + Offset / Displacement

Register Indirect
Memory address is contained in rs.

Syntax:
What is the value of $to?
ADDRESS CONTENTS
ADDIU $t1 $zero 0x1010
LW $te ($t1) ox1013 OXFE
$to = ox 0x1012 OXED
0x1011 OXBA
0x1010 OXBE
What is the value of $to?
ADDRESS CONTENTS
ADDIU $t6 $zero 0x1010
LH  $te ($t6) 0x1013 OXFE
$to = 0x1012 OXED
0x1011 OXBA
0x1010 OXBE
$t0 = Ox

Base + Offset / Displacement

Syntax:

Compute

by summing

Effective address -
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Example, Base + Offset/Displacement

What is the value of $to?
ADDRESS CONTENTS
ADDIU $t3 $zero 0x1010
LH  $te 2($t3) ox1013 OXFE
effective address: ox1012 OXED
0x1011 OxBA
$to = 0x1010 OxBE
$t0 = Ox
What is the value of $to?
ADDRESS CONTENTS
ADDIU $t7 $zero 0x1014
LHU  $te -4($t7) 0x1013 OxFE
effective address: ox1012 OXED
0x1011 OxBA
0x1010 OXBE
$to =
$t0 = Ox
What does memory look like after these
. . 5
instructions: ADDRESS CONTENTS
ADDIU $t5 $zero 0x1015 BEFORE AFTER
ADDIU $to $zero 0x1234
SH $to -3($t5) 0x1015 ox87
effective address: 0x1014 Ox65
0x1013 OXFE
Is there a memory alignment error? 0x1012 OxED
0x1011 OxBA
0x1010 OXBE
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What does memory look like after these

. . 5

instructions: ADDRESS CONTENTS

ADDIU $t2 $zero 0x1012 BEFORE AFTER

ADDIU $to $zero OXEFAA

SB $to  1($t2) 0x1015 ox87

effective address: 0x1014 Ox65
0x1013 OXFE

Is there a memory alignment error? 0x1012 OxED
0x1011 OxBA
0x1010 OXBE

What does memory look like after these

. . 5

instructions: ADDRESS CONTENTS

ADDIU $t4 $zero 0x1015 BEFORE AFTER

ADDIU $to $zero 0x1234

SW $to -3($t4) 0x1015 ox87

effective address: 0x1014 0x65
0x1013 OXFE

Is there a memory alignment error? 0x1012 OxED
0x1011 OxBA
0x1010 OxBE
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Example

What is in $t@ after the following instructions? Assume little endian memory storage.

1: ori $t0 $zero OxA5C11000

2: addi $t1 $zero 0©x10000
3: sw  $to ($t1)

ori St0 Szero OxA5C11000

b StO 1(St1)

4: 1b  $t0 1($t1)
5: sh  $te 2($t1)
6: lw $to ($t1)

$to: $to:

$t1: $t1:

ADDRESS CONTENTS ADDRESS CONTENTS
addi $t1 Szero 0x10010000 sh St0 2(St1)

$to: $to:

$t1: $t1:

ADDRESS CONTENTS ADDRESS CONTENTS
sw St0 (St1) lw St0 (St1)

$to: $to:

$t1: $t1:

ADDRESS CONTENTS ADDRESS CONTENTS
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Example

The following program is executed. What is the state of memory and registers after
each instruction? If unknown, write ¢?’ Assume little endian memory storage.

1: 1i $t1l ©x10010004
2: 1i $t0 OxCOFFEEEE
3: sw $to ($t1)

li St1 0x10010004

4: 1b  $te 3($t1)
5: sh  $te 2($t1)

6: 1w $to

[b St0 3(St1)

($t1)

$to: $to:

$t1: $t1:

ADDRESS CONTENTS ADDRESS CONTENTS
li StO0 OxCOFFEEEE sh $t02($t1)

$to: $to:

$t1: $t1:

ADDRESS CONTENTS ADDRESS CONTENTS
sw  St0 (St1) lw StO (St1)

$to: $to:

$t1: $t1:

ADDRESS CONTENTS ADDRESS CONTENTS
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PC-Relative
Used in branch instructions.

Branch target address:

Offset:

The branch instruction address and branch target address will always be

So, the offset will always be

The least significant 2 bits of the offset

So,

Instruction Format
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Example: Encode BNE $t0 $t1 LOOP

O 0O 6 Text Segment
Bkpt | Address Code Basic Source
- 0x00400000 ©x24080000 ADDIU $8,%0,0x00000000 3: ADDIU $t@ $zero @
- 0x00400004 ©x24090002 ADDIU $9,%0,0x00000002 4: ADDIU $t1 $zero 2
- 0x00400008 0xP00EOVOO NOP 6: LOOP: NOP
- 0x0040000c ©x25080001 ADDIU $8,%8,0x00000001 7: ADDIU $t@ $t0 1
- 0x00400010 ©x1509fffd BNE $8,$9,0xfffffffd 8: BNE $t0 $tl LOOP
0x00400014 0x00000000 NOP 10: NOP

Instruction Format

Opcode for BNE: Rs: Rt:

Determine offset

Branch instruction address:

Branch target address (BTA):

Calculate offset:

To encode in instruction, remove last 2 bits for immediate value:
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Pseudo Direct
Used in jump instructions

opcode target

jump target address =
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