MIPS Addressing Modes Page 1 of 10 Computer Systems and Assembly

MIPS Addressing Modes

Data Movement Instructions
In these instructions, assume rs is a register that contains an address.

INSTRUCTION SYNTAX DESCRIPTION
Load Word -> Go to the memory address stored in rs.
-> Get 4 bytes of data, starting from the
memory address in rs
=> Load data into register rt
-> Register rs must be word aligned
Load Half => Go to the memory address stored in rs.
-> Get 2 bytes of data, starting from the
memory address in rs
=> Load data into least significant 2 bytes
of register rt
=> Sign extend to fill the rest of the bits
in register rt
=> Register rs must be half word aligned
Load Half Unsigned -> Go to the memory address stored in rs.
-> Get 2 bytes of data, starting from the
memory address in rs
=> Load data into least significant 2 bytes
of register rt
-> Zero extend to fill the rest of the bits
in register rt
-> Register rs must be half word aligned
Load Byte -> Go to the memory address stored in rs.
-> Get 1 byte of data
=> Load data into least significant byte of
register rt
=> Sign extend to fill the rest of the bits
in register rt
Load Byte Unsigned -> Go to the memory address stored in rs.
-> Get 1 byte of data
=> Load data into least significant byte of
register rt
-> Zero extend to fill the rest of the bits
in register rt

© 2019, Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in
any format for educational, non-commercial purposes. Please give me appropriate credit should you
choose to modify this resource. Thank you :)

MIPS Addressing Modes Page 2 of 10 Computer Systems and Assembly
INSTRUCTION SYNTAX DESCRIPTION
Store Word -> Store data in rt starting at memory
address rs
-> Register rs must be word aligned
Store Half => Store least significant 2 bytes of data in
rt starting at memory address rs
-> Register rs must be half word aligned
Store Byte -> Store least significant byte of data in rt
starting at memory address rs
Addressing Modes

Ways of accessing operands

5 -

Register Direct

Operands are in registers.

Syntax:

e.g.

Immediate

Operand is a constant in the instruction.

Syntax:

e.g.

© 2019, Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in
any format for educational, non-commercial purposes. Please give me appropriate credit should you

choose to modify this resource. Thank you :)

MIPS Addressing Modes Page 3 of 10

Computer Systems and Assembly

Register Indirect / Base + Offset / Displacement

Register Indirect
Memory address is contained in rs.

Syntax:
What is the value of $to?
ADDRESS CONTENTS
ADDIU $t1 $zero 0x1010
LW $te ($t1) ox1013 OXFE
$to = ox 0x1012 OXED
0x1011 OXBA
0x1010 OXBE
What is the value of $to?
ADDRESS CONTENTS
ADDIU $t6 $zero 0x1010
LH $te ($t6) 0x1013 OXFE
$to = 0x1012 OXED
0x1011 OXBA
0x1010 OXBE
$t0 = Ox

Base + Offset / Displacement

Syntax:

Compute

by summing

Effective address -

© 2019, Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in
any format for educational, non-commercial purposes. Please give me appropriate credit should you

choose to modify this resource. Thank you :)

MIPS Addressing Modes Page 4 of 10 Computer Systems and Assembly

Example, Base + Offset/Displacement

What is the value of $to?
ADDRESS CONTENTS
ADDIU $t3 $zero 0x1010
LH $te 2($t3) ox1013 OXFE
effective address: ox1012 OXED
0x1011 OxBA
$to = 0x1010 OxBE
$t0 = Ox
What is the value of $to?
ADDRESS CONTENTS
ADDIU $t7 $zero 0x1014
LHU $te -4($t7) 0x1013 OxFE
effective address: ox1012 OXED
0x1011 OxBA
0x1010 OXBE
$to =
$t0 = Ox
What does memory look like after these
. . 5
instructions: ADDRESS CONTENTS
ADDIU $t5 $zero 0x1015 BEFORE AFTER
ADDIU $to $zero 0x1234
SH $to -3($t5) 0x1015 ox87
effective address: 0x1014 Ox65
0x1013 OXFE
Is there a memory alignment error? 0x1012 OxED
0x1011 OxBA
0x1010 OXBE

© 2019, Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in
any format for educational, non-commercial purposes. Please give me appropriate credit should you
choose to modify this resource. Thank you :)

MIPS Addressing Modes Page 5 of 10 Computer Systems and Assembly

What does memory look like after these

. . 5

instructions: ADDRESS CONTENTS

ADDIU $t2 $zero 0x1012 BEFORE AFTER

ADDIU $to $zero OXEFAA

SB $to 1($t2) 0x1015 ox87

effective address: 0x1014 Ox65
0x1013 OXFE

Is there a memory alignment error? 0x1012 OxED
0x1011 OxBA
0x1010 OXBE

What does memory look like after these

. . 5

instructions: ADDRESS CONTENTS

ADDIU $t4 $zero 0x1015 BEFORE AFTER

ADDIU $to $zero 0x1234

SW $to -3($t4) 0x1015 ox87

effective address: 0x1014 0x65
0x1013 OXFE

Is there a memory alignment error? 0x1012 OxED
0x1011 OxBA
0x1010 OxBE

© 2019, Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in
any format for educational, non-commercial purposes. Please give me appropriate credit should you
choose to modify this resource. Thank you :)

MIPS Addressing Modes

Page 6 of 10

Computer Systems and Assembly

Example

What is in $t@ after the following instructions? Assume little endian memory storage.

1: ori $t0 $zero OxA5C11000

2: addi $t1 $zero 0©x10000
3: sw $to ($t1)

ori St0 Szero OxA5C11000

b StO 1(St1)

4: 1b $t0 1($t1)
5: sh $te 2($t1)
6: lw $to ($t1)

$to: $to:

$t1: $t1:

ADDRESS CONTENTS ADDRESS CONTENTS
addi $t1 Szero 0x10010000 sh St0 2(St1)

$to: $to:

$t1: $t1:

ADDRESS CONTENTS ADDRESS CONTENTS
sw St0 (St1) lw St0 (St1)

$to: $to:

$t1: $t1:

ADDRESS CONTENTS ADDRESS CONTENTS

© 2019, Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in
any format for educational, non-commercial purposes. Please give me appropriate credit should you

choose to modify this resource. Thank you :)

MIPS Addressing Modes

Page 7 of 10

Computer Systems and Assembly

Example

The following program is executed. What is the state of memory and registers after
each instruction? If unknown, write ¢?’ Assume little endian memory storage.

1: 1i $t1l ©x10010004
2: 1i $t0 OxCOFFEEEE
3: sw $to ($t1)

li St1 0x10010004

4: 1b $te 3($t1)
5: sh $te 2($t1)

6: 1w $to

[b St0 3(St1)

($t1)

$to: $to:

$t1: $t1:

ADDRESS CONTENTS ADDRESS CONTENTS
li StO0 OxCOFFEEEE sh $t02($t1)

$to: $to:

$t1: $t1:

ADDRESS CONTENTS ADDRESS CONTENTS
sw St0 (St1) lw StO (St1)

$to: $to:

$t1: $t1:

ADDRESS CONTENTS ADDRESS CONTENTS

© 2019, Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in
any format for educational, non-commercial purposes. Please give me appropriate credit should you

choose to modify this resource. Thank you :)

MIPS Addressing Modes Page 8 of 10 Computer Systems and Assembly

PC-Relative
Used in branch instructions.

Branch target address:

Offset:

The branch instruction address and branch target address will always be

So, the offset will always be

The least significant 2 bits of the offset

So,

Instruction Format

© 2019, Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in
any format for educational, non-commercial purposes. Please give me appropriate credit should you
choose to modify this resource. Thank you :)

MIPS Addressing Modes Page 9 of 10 Computer Systems and Assembly

Example: Encode BNE $t0 $t1 LOOP

O 0O 6 Text Segment
Bkpt | Address Code Basic Source
- 0x00400000 ©x24080000 ADDIU $8,%0,0x00000000 3: ADDIU $t@ $zero @
- 0x00400004 ©x24090002 ADDIU $9,%0,0x00000002 4: ADDIU $t1 $zero 2
- 0x00400008 0xP00EOVOO NOP 6: LOOP: NOP
- 0x0040000c ©x25080001 ADDIU $8,%8,0x00000001 7: ADDIU $t@ $t0 1
- 0x00400010 ©x1509fffd BNE $8,$9,0xfffffffd 8: BNE $t0 $tl LOOP
0x00400014 0x00000000 NOP 10: NOP

Instruction Format

Opcode for BNE: Rs: Rt:

Determine offset

Branch instruction address:

Branch target address (BTA):

Calculate offset:

To encode in instruction, remove last 2 bits for immediate value:

© 2019, Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in
any format for educational, non-commercial purposes. Please give me appropriate credit should you
choose to modify this resource. Thank you :)

MIPS Addressing Modes Page 10 of 10 Computer Systems and Assembly

Pseudo Direct
Used in jump instructions

opcode target

jump target address =

© 2019, Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in
any format for educational, non-commercial purposes. Please give me appropriate credit should you
choose to modify this resource. Thank you :)

	MIPS Addressing Modes
	Data Movement Instructions
	INSTRUCTION
	SYNTAX
	DESCRIPTION
	LW rt (rs)
	LH rt (rs)
	LHU rt (rs)
	LB rt (rs)
	LBU rt (rs)
	INSTRUCTION
	SYNTAX
	DESCRIPTION

	SW rt (rs)
	SH rt (rs)
	SB rt (rs)

	Addressing Modes
	 Register direct
	 immediate
	 Register indirect / Base + offset/displacement
	 PC-relative
	 Pseudo-direct
	Register Direct
	 INST rd rs rt
	 OR $t5 $t3 $t8

	Immediate
	 INST rt rs immediate
	 AND $t4 $t1 0x000FF000

	Register Indirect / Base + Offset / Displacement
	Register Indirect
	 INST rt (rs)
	 FE ED BA BE
	ADDRESS
	CONTENTS

	11111111 11111111 10111010 10111110
	
	 FF FF BA BE
	ADDRESS
	CONTENTS

	Base + Offset / Displacement
	 INST rt immed(rs)
	 Effective address
	Contents of register with constant in instruction
	 Memory location of operand
	 rs + immed
	 SW $s0 12($t4), EA = $t4 + 12

	
	Example, Base + Offset/Displacement
	 $t3 + 2
	0x1010 + 0x2 = 0x1012
	11111111 11111111 11111110 11101101
	 FE FF FE ED
	ADDRESS
	CONTENTS

	 $t7 - 4
	0x1014 - 4 = 0x1010
	00000000 00000000 10111010 10111110
	
	 00 00 BA BE
	ADDRESS
	CONTENTS

	 $t5 - 3
	0x1015 - 3 = 0x1012
	No because the effective address is ½ word aligned.
	ADDRESS
	 CONTENTS
	BEFORE
	AFTER

	0x87
	0x65
	0x12
	0x34
	0xBA
	0xBE
	 $t2 + 1
	0x1012 + 1 = 0x1012
	No because the effective address is byte aligned, by definition of a memory address.
	ADDRESS
	 CONTENTS
	BEFORE
	AFTER

	0x87
	0x65
	0xAA
	0xED
	0xBA
	0xBE
	 $t5 - 3
	0x1015 - 3 = 0x1012
	Yes because the effective address not word aligned.
	ADDRESS
	 CONTENTS
	BEFORE
	AFTER

	0x87
	0x65
	0xFE
	0xED
	0xBA
	0xBE

	
	
	Example
	ori $t0 $zero 0xA5C11000
	
	
	
	

	addi $t1 $zero 0x10010000
	sw $t0 ($t1)
	lb $t0 1($t1)
	sh $t0 2($t1)
	lw $t0 ($t1)
	Example

	li $t1 0x10010004
	li $t0 0xC0FFEEEE
	sw $t0 ($t1)
	lb $t0 3($t1)
	sh $t0 2($t1)
	lw $t0 ($t1)
	PC-Relative
	 address of next instruction to execute if branch is taken
	BTA = sum of PC of next instruction (if branch not taken) + offset.
	BTA = pc + 4 + offset
	 difference between BTA and address of what would be next
	instruction (if branch not taken) => offset = BTA - (pc + 4)
	word aligned (divisible by 4)
	 word aligned (divisible by 4)
	 branch instruction address: 0x1000, branch target address: 0x1094, offset = 1
	offset = 0x1094 - (0x1000 + 4) = 0x90
	 will always be 0
	 the instruction itself does not store the least significant 2 bits
	
	
	Instruction Format
	opcode
	rs
	rt
	offset (w/o least sig 2 bits)

	
	Example: Encode BNE $t0 $t1 LOOP
	op
	rs
	rt
	offset
	0x05 = 000101 $t0 = $8 = 01000 $t1 = $9 = 01001
	 0x0040 0010
	 0x0040 0008
	BTA = pc + 4 + offset
	=> offset = BTA - (pc + 4)
	offset = BTA - (pc + 4)
	Offset = 0x0040 0008 - (0x0040 0010 + 4) = -12, C = 0000000000001100
	Convert offset to 2SC:
	0000000000001100
	1111111111110011
	1111111111110100
	11 1111 1111 1111 0100
	 1111 1111 1111 1101
	0xFFFD

	
	000101
	01000
	01001
	11111111111101
	0x1509FFFD

	Pseudo Direct
	 (pc + 4)[31:28] concat (target << 2)

