MIPS Instructions Page 1 of 19 Computer Systems and Assembly

MIPS Instructions, Memory Storage

General Purpose Registers

REGISTER NAME |REGISTER # DESCRIPTION

a special purpose register which always contains a
constant value of @. It can be read, but cannot be
$zero $0 written.

a register reserved for the assembler. If the
assembler needs to use a temporary register (e.g.
for pseudo instructions), it will use $at, so this
$at $1 register is not available for use programmer use.

registers are normally used for return values for
subprograms. $v@ is also used to input the

$vo-$vi $2-$3 requested service to syscall.
registers are used to pass arguments (or
$a0-%$a3 $4-$7 parameters) into subprograms.
registers are used to store temporary variables.
$8-%$15, The values of temporary variables can change when a
$to-$t9 $24-$25 subprogram is called.

registers are used to store saved values. The
values of these registers are maintained across
$s0-$s7 $16-$23 subprogram calls.

registers are used by the operating system, and are
$ko-$k1 $26-%$27 not available for use programmer use.

pointer to global memory. Used with heap
$gp $28 allocations.

stack pointer, used to keep track of the beginning
$sp $29 of the data for this method in the stack.

frame pointer, used with the $sp for maintaining
information about the stack. This text will not use
$fp $30 the $fp for method calls.

return address, a pointer to the address of the
instruction to execute when returning from a
$ra $31 subprogram.

Source: Introduction To MIPS Assembly Language Programming by Charles W. Kann, 2015

© 2019, Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in
any format for educational, non-commercial purposes. Please give me appropriate credit should you
choose to modify this resource. Thank you :)

MIPS Instructions Page 2 of 19 Computer Systems and Assembly

Special Registers

pc

hi After a mult instruction -
After a div instruction

1o After a mult instruction -
After a div instruction

Note

You may use either the name or register number when writing a program.

Example

Assembler Directives

Indicated by a

© 2019, Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in
any format for educational, non-commercial purposes. Please give me appropriate credit should you
choose to modify this resource. Thank you :)

MIPS Instructions Page 3 of 19 Computer Systems and Assembly
Data Directives
.Space
Description Stored As
ADDRESS CONTENTS
label + 4
label + 3
General Format label + 2
label + 1
label + ©
Example Usage
.ascii
Description Stored As
ADDRESS CONTENTS
label + 2
General Format
label + 1
label + ©

Example Usage

© 2019, Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in
any format for educational, non-commercial purposes. Please give me appropriate credit should you

choose to modify this resource. Thank you :)

MIPS Instructions Page 4 of 19 Computer Systems and Assembly

.asciiz

Description Stored As
ADDRESS CONTENTS
label + 4

General Format label + 3
label + 2
label + 1
label + ©

Example Usage

.byte

Description Stored As
ADDRESS CONTENTS
label + 5
label + 4

General Format
label + 3
label + 2
label + 1
label + ©

Example Usage

© 2019, Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in
any format for educational, non-commercial purposes. Please give me appropriate credit should you
choose to modify this resource. Thank you :)

MIPS Instructions

Page 5 of 19

Computer Systems and Assembly

.half

Description

General Format

Stored As

ADDRESS

CONTENTS

label + 5

label + 4

label

+
w

label + 2

label + 1

label

+
(W)

Example Usage

.word

Description

General Format

Stored As

ADDRESS

CONTENTS

label + 7

label + 6

label + 5

label + 4

label + 3

label + 2

label + 1

label + ©

Example Usage

© 2019, Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in
any format for educational, non-commercial purposes. Please give me appropriate credit should you

choose to modify this resource. Thank you :)

MIPS Instructions Page 6 of 19 Computer Systems and Assembly

.float

Description Stored As

ADDRESS CONTENTS

label + 7

label + 6

General Format label + 5

label + 4

label + 3

label + 2

label + 1

label + 0

Example Usage

42: Ox42280000 6.75: 0x40D80000

Example
(an expanded version of this example can be found here)

.data

.Space 5

.ascii "hop"

.asciiz "Flux"

.byte 10 0x00 0x41 48 0x30 OXFF

.half 0x1234 0x56 OxABCD

.word OxFACE OxDEADBEEF

.float 42 6.75

0086 Data Segment

Address Value (+0) Value (+4) Value (+8) Value (+c) Value (+10) Value (+14) Value (+18) Value (+1c)
0x10010000 0x00000000 0x706T6800 0x78756c46 0x41000a00 0x00ff3030 ©0x00561234 0x0000abcd 0x0000face

0x10010020 Oxdeadbeef 0x42280000 ©0x40d30000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
0x10010040 0x00000000 0x00000000 0x 000 0Ox 0x00000000 0x00000000 0x00000000 0x00000000

<a|/E»| | 0x10010000 (.data) +| ¥ Hexadecimal Addresses ¥ Hexadecimal Values [| ASCII

© 2019, Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in
any format for educational, non-commercial purposes. Please give me appropriate credit should you
choose to modify this resource. Thank you :)

https://docs.google.com/document/d/1DUJ8j9j1HXQEfuP6l0Pfezo_ZtnvGUtCLWUqC6PV0qY/edit#heading=h.9th5e2ne7me6

MIPS Instructions Page 7 of 19 Computer Systems and Assembly

Labels

Converted by the assembler to an

Indicated by a

Used to label and

Can be used in and segments of code.

Sample Program

.text
addiu $t0 $zero © # instr 1
1i $t1 2 # instr 2
loop: nop # instr 3
addiu $to $to 1 # instr 4
bne $to $t1 loop # instr 5
nop # instr 6
i @ Text Segment

Program Arguments:

Bkpt Address Code Basic Source
0x00400000 0x24080000 addiu $8,$0,0x00000000 2: addiu $t@ $zero 0 # instr 1
0x00400004 0x24090002 addiu $9,%$0,0x00000002 3: 1i $tl 2 # instr 2
0x00400008 0x00000000 nop 5: loop: nop # instr 3
0x0040000c 0x25080001 addiu $8,$8,0x00000001 6: addiu $to $t0 1 # instr 4
0x00400010 0x1509fffd bne $8,%$9,0xfffffffd 7: bne $t0 $t1 loop # instr 5
0x00400014 0x0000000@ nop 9: nop # instr 6

instruction address - machine code - native commands - written by programmer

© 2019, Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in
any format for educational, non-commercial purposes. Please give me appropriate credit should you
choose to modify this resource. Thank you :)

MIPS Instructions Page 8 of 19 Computer Systems and Assembly

MIPS Address Space (Not to Scale)

0x9000 0000 | MMIO

Kernel Data

Ox7fff fe00 | Stack

Heap

0x1004 0000

Static Data
0x1001 0000

Program Text

0x0040 0000

Reserved
0X0000 0000

The label loop represents which address?

Instruction Memory

MIPS ISA is

A program is comprised of

© 2019, Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in
any format for educational, non-commercial purposes. Please give me appropriate credit should you
choose to modify this resource. Thank you :)

MIPS Instructions Page 9 of 19 Computer Systems and Assembly

which are encoded as ()
Therefore, each instruction takes up memory locations.

Example

| @® Text Segment

Program Arguments:

Bkpt Address Code Basic Source
0x00400000 0x24080000 addiu $8,$0,0x00000000 2: addiu $t@ $zero 0 # instr 1
0x00400004 0x24090002 addiu $9,$0,0x00000002 3: 1i $t1 2 # instr 2
0x00400008 0x00000000 nop 5: loop: nop # instr 3
0x0040000c 0x25080001 addiu $8,$8,0x00000001 6: addiu $t@ $te 1 # instr 4
0x00400010 0x1509fffd bne $8,%$9,0xfffffffd 7: bne $t@ $t1 loop # instr 5
0x00400014 0x00000000@ nop 9: nop # instr 6
What is stored at each of these A closer look just at addresses
addresses? 0x00400000 through 0x00400007
ADDRESS DATA (ENCODED INSTR) ADDRESS DATA (ENCODED INSTR)
0x0040 0014 0x0040 0007
0x0040 0010 0x0040 0006
0x0040 000C 0x0040 0005
0x0040 0008 0x0040 0004
0x0040 0004 0x0040 0003
0x0040 0000 0x0040 0002
0x0040 0001
0x0040 0000

© 2019, Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in
any format for educational, non-commercial purposes. Please give me appropriate credit should you
choose to modify this resource. Thank you :)

MIPS Instructions

Page 10 of 19 Computer Systems and Assembly

Instruction Format

Many instructions use

registers: 1

Write the general form of an instruction:

Write an example of an instruction:

Instruction Types

Operate Instructions

Uses

unless unsigned is indicated.

e.g.

Example: Assume $t0 = OxFFFFFFFF, St1 = 0x00000001

add $t2 $te $t1

Is there overflow?

addu $t2 $te $t1

Is there overflow?

© 2019, Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in
any format for educational, non-commercial purposes. Please give me appropriate credit should you

choose to modify this resource. Thank you :)

MIPS Instructions

Page 11 of 19

Computer Systems and Assembly

Register vs. Inmediate Instructions

e.g.

add $t2 $t1 $to

addi $t2 $t1 ox4

In MIPS, the immediate value can be bits max.
Other Operate Instructions
e.g.
Loads and Stores
Load Word
Loads of data || \pDRESS | CONTENTS
. 0x1013 | oxCe
from memory into a
What is the value of $to? ox1012 | OxFF
LI $t1 ox1010 ox1011 OXEE
LW $t0 ($t1) X X
$t0 = ox 0x1010 OXEE
Store Word
Takes a ADDRESS CONTENTS
and stores the value in BEFORE AFTER
Example 0x1013 oxCo
What doe§ memory look like after these Ox1012 OXEF
instructions?
0x1011 OXEE
LI $t1 ox1010
LI $t@ OxABCDEFO@ Ox1010 OXEE
SW $to ($t1)

© 2019, Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in
any format for educational, non-commercial purposes. Please give me appropriate credit should you
choose to modify this resource. Thank you :)

MIPS Instructions

Page 12 of 19

Computer Systems and Assembly

Load Half Word

Loads a (ADDRESS CONTENTS
from memory into a 0x1013 OXFE
Uses 0x1012 OXED
Example

What is the value of $te? ox1e1l OxBA

LI $t1 oxlele

LH $to ($t1) ox1o10 5t
$to =

$t0 = ox
Store Half Word

Stores the ADDRESS CONTENTS

(BEFORE AFTER

from a register into 0x1013 OxFE

Example 0x1012 @xED

What does memory look like after these

instructions? ox1011 OXxBA

LI $t1 oxl1e1e 0x1010 OxBE

ADDI $t0 $zero OxEFQ0O

SH $to ($t1)
Load Byte

Loads a ADDRESS CONTENTS
from memory into a 0x1013 OxFE
Uses 0x1012 OXED
Example

What is the value of $te? oxiell OxBA

LI $t1 oxle1le

LB $to ($t1) ox1o10 OBt

$to

$to = ox

© 2019, Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in
any format for educational, non-commercial purposes. Please give me appropriate credit should you

choose to modify this resource. Thank you :)

MIPS Instructions Page 13 of 19 Computer Systems and Assembly

Store Byte

Stores the ADDRESS CONTENTS

from a register into BEFORE AFTER
Example ox1013 OXFE

What does memory look like after these X X

. . 5

instructions:? ox1012 OXED

LI $t1 ox1e10 ox1011 OxBA

ADDI $t@ $zero OxABCD

SB $te ($t1) 0x1010 OxBE

Unsigned Loads

e.g.

Control Flow Instructions

© 2019, Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in
any format for educational, non-commercial purposes. Please give me appropriate credit should you
choose to modify this resource. Thank you :)

MIPS Instructions Page 14 of 19 Computer Systems and Assembly

Example

-

@® Text Segment

Program Arguments:

Bkpt Address Code Basic Source
0x00400000 0x24080000 addiu $8,$0,0x00000000 2: addiu $t@ $zero O # instr 1
0x00400004 0x24090002 addiu $9,$0,0x00000002 3: 1i $t1 2 # instr 2
0x00400008 0x00000000 nop 5: loop: nop # instr 3
0x0040000c 0x25080001 addiu $8,$8,0x00000001 6: addiu $t0 $to 1 # instr 4
0x00400010 0x1509fffd bne $8,%$9,0xfffffffd 7: bne $t@ $t1 loop # instr 5
0x00400014 0x00000000 nop 9: nop # instr 6

Instruction Execution Order
Assume each instruction takes 1 clock cycle to execute.

CLOCK CYCLE PC INSTRUCTION

1

9

Example

Pseudocode Assembly code

© 2019, Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in
any format for educational, non-commercial purposes. Please give me appropriate credit should you
choose to modify this resource. Thank you :)

MIPS Instructions Page 15 of 19 Computer Systems and Assembly

Endian-ness

The storage order of bytes in memory is determined by the

Example
LI $t1 oxl1e14 How should we store the bytes in memory?
LI~ $te ox12345678 ADDRESS CONTENTS
SW $te ($t1)
0x1017
0x1016
0x1015
0x1014
Little Endian
stored at the || ppppes CONTENTS

memory address ox1017

The order of
0x1015
within each ox1014
stays the
same.
Example

LI $t1 ox1e14
LI $te OxABCDEF0®
SW $te ($t1)

$t0 = Ox

© 2019, Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in
any format for educational, non-commercial purposes. Please give me appropriate credit should you
choose to modify this resource. Thank you :)

MIPS Instructions Page 16 of 19

Computer Systems and Assembly

Big Endian
stored at the || \pppess CONTENTS
memory address oOx1017
Note
The order of 0x1016
within each 0x1615
stays the same. oxleld
Example
LI $t1 eox1014
LI $te ©OxABCDEF0®@
SW $te ($t1)
Examples
Assuming little endian storage format:
LI~ $tl ex1016 ADDRESS CONTENTS
LW $to ($t1)
0x1015 0x34
$to = ox ox1014 ox12
0x1013 OxFE
Assuming big endian storage format:
LI $t1 oxle1e 0x1012 OxED
LW $to ($t1)
0x1011 OxBA
$to = ox 0x1010 OxBE
Note
MIPS uses memory storage
format.

What happens if we try to execute:
LI $t1 oxlell
LW $te ($t1)

© 2019, Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in
any format for educational, non-commercial purposes. Please give me appropriate credit should you

choose to modify this resource. Thank you :)

MIPS Instructions Page 17 of 19 Computer Systems and Assembly

Alignment

ADDRESS | CONTENTS —

0x101C ox11

0x101B OxEF

0x101A oxCD

0x1019 OxAB

0x1018 0x90

MIPS permits only
ox1017 0x78

0x1016 0x56

memory accesses for
0x1015 ox34

0x1014 0x12

How do we determine if an access is memory aligned?

For word alignment, look at

For half word alignment, look at

Which of the following memory accesses are aligned?

LW $te (ox1011) SH $te (ex1e1l)
LW $te (ox1018) SH $te (ox1019)
SW $te (ex1e14) LB $to (ox1011)
SW $t0 (ox1022) LBU $to (ox1014)
LH $te (ox1011) SB $t@ (ox1e15)
LHU $te (ox1013) SB $t@ (ox1017)

What happens if we try to make an unaligned memory access?

© 2019, Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in
any format for educational, non-commercial purposes. Please give me appropriate credit should you
choose to modify this resource. Thank you :)

MIPS Instructions Page 18 of 19 Computer Systems and Assembly

Pseudo Instructions (aka)

e.g.

Some instructions have several formats.

e.g.

Instruction Encoding

MIPS instructions are encoded in bits.
There are different instruction formats in MIPS.
How many general purpose registers does MIPS have?

So, how many bits do we need for the registers?

_ type(type)
e.g.
_ type(type)
e.g.
__ type (. type)
e.g.

© 2019, Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in
any format for educational, non-commercial purposes. Please give me appropriate credit should you
choose to modify this resource. Thank you :)

MIPS Instructions Page 19 of 19 Computer Systems and Assembly

Example: What types of instructions are the following instructions?

ADD LI BLEZ
BEQ SH J
ADDI LB IR

How do pseudo ops get encoded as machine code?

Examples

Decode this instruction: Ox00AF8020

Decode this instruction: 0x2402000A

Decode this instruction: 0x00000000

© 2019, Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in
any format for educational, non-commercial purposes. Please give me appropriate credit should you
choose to modify this resource. Thank you :)

	MIPS Instructions, Memory Storage
	General Purpose Registers
	REGISTER NAME
	REGISTER #
	DESCRIPTION

	
	Special Registers
	Program counter - contains the memory address of the current instruction being executed, instruction pointer
	Mult - Stores the upper 32 bits of a multiplication operation - if anything non-zero means we had overflow
	Div - Stores the remainder
	Mult - Stores the lower 32 bits of a multiplication operation
	Div - Stores the quotient
	Note
	ADD $a0 $zero $t7 = ADD $4 $0 $15

	Assembler Directives
	 . (period)
	Note to the assembler on how to interpret the following code
	 text following text as program instructions
	 data following text as data to store in data region
	
	Data Directives
	.space
	allocates n bytes of memory in the data region
	.space n or label: .space n
	# n is a positive decimal (?) integer
	ADDRESS
	CONTENTS
	

	0x00
	
	0x00
	
	0x00
	
	0x00
	
	0x00
	
	.space 5 or label: .space 5

	.ascii
	interpret the data which follows it as an ASCII string
	.ascii "string"
	
	ADDRESS
	CONTENTS
	

	0x70
	'p'
	0x6f
	'o'
	0x68
	'h'
	.ascii “hop” or hop_str: .asciiz “hop”

	
	.asciiz
	interpret the data which follows it as an ASCII string, add null term
	
	.asciiz "string"
	
	ADDRESS
	CONTENTS
	

	0x00
	null term
	0x78
	'x'
	0x75
	'u'
	0x6c
	'l'
	0x46
	'F'
	.asciiz “Flux” or flux: .asciiz “Flux”

	.byte
	allocates 1 byte per value, byte aligned
	.byte # # #
	
	ADDRESS
	CONTENTS
	

	0xFF
	< highest addr
	0x30
	
	0x30
	
	0x41
	
	0x00
	
	0x0A
	< lowest addr
	.byte 10 0x00 0x41 48 0x30 0xFF or byte_data: .byte 10 0x00 0x41 48 0x30 0xFF

	
	.half
	allocates 2 bytes per value, ½ word aligned
	.half # # #
	
	ADDRESS
	CONTENTS
	

	0xAB
	< highest addr
	0xCD
	
	0x00
	
	0x56
	
	0x12
	
	0x34
	< lowest addr
	.half 0x1234 0x56 0xABCD or half_data: .half 0x1234 0x56 0xABCD

	.word
	allocates 4 bytes per value, word aligned
	.word # # #
	
	ADDRESS
	CONTENTS
	

	0xDE
	< highest addr
	0xAD
	
	0xBE
	
	0xEF
	< word aligned
	0x00
	<
	0x00
	<
	0xFA
	
	0xCE
	< lowest addr
	.word 0xFACE 0xDEADBEEF or word_data: .word 0xFACE 0xDEADBEEF

	.float
	allocates 4 bytes per value saves values in IEEE 754 s.p.f.p format
	.float # # #
	
	ADDRESS
	CONTENTS
	

	0x40
	< highest addr
	0xD8
	
	0x00
	
	0x00
	
	0x42
	
	0x28
	
	0x00
	
	0x00
	< lowest addr
	.float 42 6.75 or float_data: .float 42 6.75

	Example

	Labels
	 address
	 : (colon)
	 Strings code blocks
	 .data .text

	Sample Program
	
	MIPS Address Space (Not to Scale)
	NOP # instr 6
	BNE $t0 $t1 LOOP # instr 5
	ADDIU $t0 $t0 1 # instr 4
	NOP # instr 3
	ADDIU $t1 $zero 2 # instr 2
	ADDIU $t0 $zero 0 # instr 1
	 0x0040 0008

	Instruction Memory
	 Byte addressable - each byte of data has its own memory address.
	
	 instructions
	 32 bits (4 bytes)
	 4
	Example
	ADDRESS
	DATA (ENCODED INSTR)
	0x00000000
	0x1509fffd
	0x25080001
	0x00000000
	0x24090002
	0x24080000
	ADDRESS
	DATA (ENCODED INSTR)

	0x24
	0x09
	0x00
	0x02
	0x24
	0x08
	0x00
	0x00

	
	Instruction Format
	 3 destination sources
	Instr R_dest R_source1 R_source2
	XORI $t1 $t2 100

	Instruction Types
	 Operate
	 Manipulate data directly e.g. arith, logic, add, addi, and, shift
	 Data movement
	 Move data between memory and registers e.g. lw, sw, lh, sh
	 Control flow
	 Change the sequence of instruction execution beq $t2 $t3 label

	Operate Instructions
	 two’s complement
	Arithmetic instructions, logical instructions, shifts
	Example: Assume $t0 = 0xFFFFFFFF, $t1 = 0x00000001
	0xFFFFFFFF = -1
	$t0 + $t1 = 0
	 no
	127 + 1 = 128 = 0x100000000
	 yes

	Register vs. Immediate Instructions
	 add / addi, and / andi, or / ori, xor, xori
	 16

	Other Operate Instructions
	 SRL, SRA, SLL,

	Loads and Stores
	Load Word
	 1 word (4 bytes)
	 register
	 C0 FF EE EE
	ADDRESS
	CONTENTS

	Store Word
	 register
	 memory
	Example
	ADDRESS
	 CONTENTS
	BEFORE
	AFTER
	0xAB
	0xCD
	0xEF
	0x00

	Load Half Word
	 ½ word 2 bytes
	 register
	 sign extension
	Example
	11111111 11111111 10111010 10111110
	 FF FF BA BE
	ADDRESS
	CONTENTS

	Store Half Word
	 least significant
	half word 2 bytes
	 memory
	Example
	ADDRESS
	 CONTENTS
	BEFORE
	AFTER
	0xFE
	0xED
	0xEF
	0x00

	Load Byte
	 byte
	 register
	 sign extension
	Example
	11111111 11111111 11111111 10111110
	 FF FF FF BE
	ADDRESS
	CONTENTS

	Store Byte
	 least significant byte
	 memory
	Example
	ADDRESS
	 CONTENTS
	BEFORE
	AFTER
	0xFE
	0xED
	0xBA
	0xCD

	Unsigned Loads
	 LHU, LBU - zero extends

	Control Flow Instructions
	Control the sequence of instructions
	Affect the PC
	 branches, jumps, beq, jal <- enter subroutines
	
	Example
	Instruction Execution Order
	CLOCK CYCLE
	PC
	INSTRUCTION
	0x0040 0000
	Instr 1
	0x0040 0004
	Instr 2
	0x0040 0008
	Instr 3
	0x0040 000C
	Instr 4
	0x0040 0010
	Instr 5
	0x0040 0008
	Instr 3
	0x0040 000C
	Instr 4
	0x0040 0010
	Instr 5
	0x0040 0014
	Instr 6

	Example
	a = 0
	if a <= 8:
	 print a
	 a++
	end program
	.text
	li $v0 1
	li $a0 0
	li $t0 8
	
	print_loop:
	
	syscall
	
	addi $a0 $a0 1
	blt $a0 $t0 print_loop
	
	j end_program
	
	end_program:
	
	li $v0 10
	syscall

	Endian-ness
	 ISA
	Example
	ADDRESS
	CONTENTS
	0x12 or 0x78
	0x34 or 0x56
	0x56 or 0x34
	0x78 or 0x12

	Little Endian
	least significant byte
	lower
	Note
	bits
	byte

	Example
	ADDRESS
	CONTENTS
	
	
	
	

	
	Big Endian
	most significant byte
	lower
	Note
	bits
	byte

	Example
	ADDRESS
	CONTENTS

	Examples
	 FE ED BA BE
	 BE BA ED FE
	ADDRESS
	CONTENTS

	Note
	 little endian
	word alignment error

	Alignment
	ADDRESS
	CONTENTS
	 word alignment
	 ½ word alignment
	 byte alignment
	aligned
	loads and stores
	Look at the least significant bits - are they 0?
	 least significant 2 bits
	 least significant bit
	Which of the following memory accesses are aligned?
	Assembler memory alignment error

	Pseudo Instructions (aka ______________________________)
	Instructions that save programmer time that are not native to the ISA, unique to assembler
	 LI $t0 42 -> ADDIU $t0 $zero 42
	 BEQ basic format BEQ $t0 $t1 label, pseudo format: BEQ $t1 -100 label

	Instruction Encoding
	 32
	 3
	 32
	 5
	R Register
	_____ type (______________________________ type)
	6 bits
	5 bits
	5 bits
	5 bits
	5 bits
	6 bits
	opcode
	rs
	rt
	rd
	shamt
	funct
	 and, or, xor, shifts,
	I Immediate

	_____ type (______________________________ type)
	6 bits
	5 bits
	5 bits
	16 bits
	opcode
	rs
	rt
	address / immediate
	 branches, addi, andi, ori
	J Jump

	_____ type (______________________________ type)
	6 bits
	26 bits
	opcode
	immediate
	 j, jal
	Example: What types of instructions are the following instructions?
	

	How do pseudo ops get encoded as machine code?
	First they get converted to the basic instructions, then encoded

	Examples
	ADDIU $v0 $zero 0xA
	SLL $zero $zero 0 / NOP

