Sequential Logic

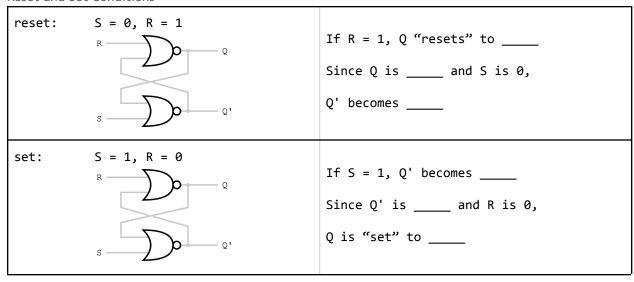
Learning Objectives

- 1. State the difference between combinational and sequential logic.
- 2. Identify rising and falling edges of a signal.
- 3. State the difference between edge triggered and level triggered circuit.
- 4. Complete timing diagrams for an SR latch, D latch, and D flip-flop.

Combinational versus Sequential

There are two types of locks:

Depends only on not the in which they were	Depends on the input $\begin{pmatrix} 35 & 0 & 5 \\ 30 & & & 10 \\ 25 & 20 & 15 \end{pmatrix}$	_:
	always give the same output for a given set of inpu	ts
	depend on the current state and the input. Therefo	 re,
	They are used to	
	(S-R) Latch	
Latches are	devices. They are sensitiv	e.
changes.	sensitive: the output changes when the value of the input	
	- value of Q becomes, regardless of previous value	
	- value of Q becomes, regardless of previous value	
This logic circuit h	as two versions: active and active	

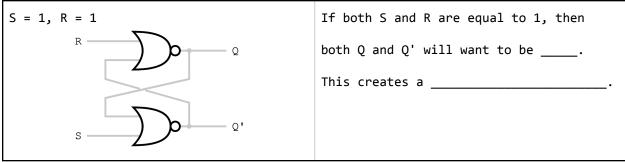

^{© 2019,} Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in any format for **educational**, non-commercial purposes. Please give me appropriate credit should you choose to modify this resource. Thank you:)

Active _____

Review - Nor Truth Table

Symbol & Truth Table	If one of the inputs of a nor gate is 1,
	the output must be

Reset and Set Conditions


Hold Condition, R = S = 0

We can't predict the output of a nor gate if we know only one of the inputs is $_$ ___. So for S = R = 0, we must know the initial values of Q & Q' to determine the outputs.

S = R = 0, Q_init = 0, Q'_init = 1	If Q is initially 0 and Q' is initially 1, then the output of the
	nor gate stays,
ς Σρου ο'	and the output of the other nand gate
	stays
S = R = 0, Q_init = 1, Q'_init = 0	If Q is initially 1 and Q' is initially 0, then the output of the
	nor gate stays,
s o'	and the output of the other nand gate
	stays

Invalid Input Combination: S = R = 1

Problem 1: Conflict



Problem 2: Race Condition

The final values of Q and Q' are ______ when changing from _____ to _____.

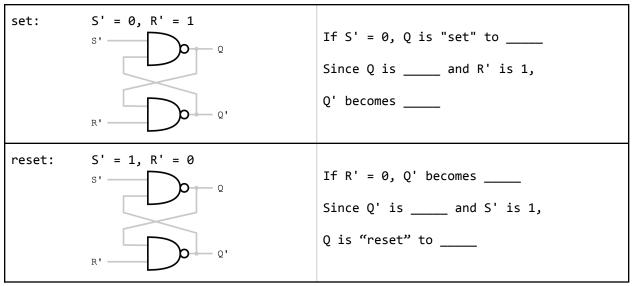
The _____ for a signal to travel through a wire is _____.

So, we cannot assume two signals can change at precisely the same time.

Summary

S	R	Q	Q'	Action
0	0			
0	1			
1	0			
1	1			•

Active ______ S-R Latch Timing Diagrams
Fill out Q and Q' for given S and R signals.

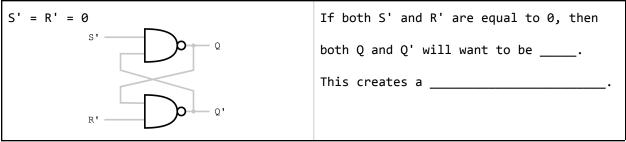

	ı				
S					
R					
Q					
Q'					
S					
R					
Q					
Q'					
S					
R					
Q					
Q'					

Active _____

Review - Nand Truth Table

Symbol & Truth Table	If one of the inputs is 0,
	the output must be

Reset and Set Conditions

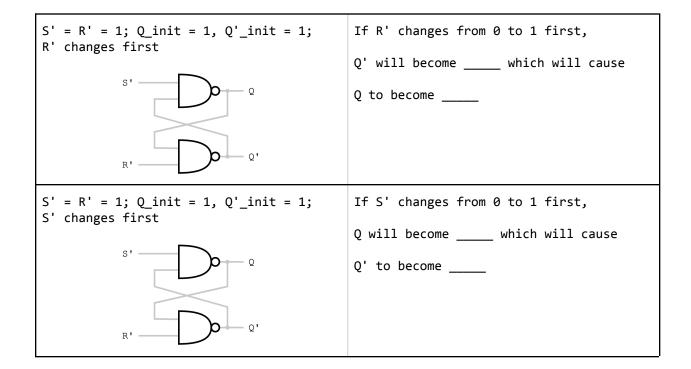

Hold Condition, R' = S' = 1

We can't predict the output of a nand gate if we know only one of the inputs is $__$. So for S'= R'= 1, we must know the initial values of Q & Q' to determine the outputs.

S' = R' = 1, Q_init = 0, Q'_init = 1	If Q is initially 0 and Q' is initially 1, then the output of the					
	nand gate stays,					
8,	and the output of the other nand gate					
R'	stays					
S' = R' = 1, Q_init = 1, Q'_init = 0	If Q is initially 1 and Q' is initially 0, then the output of the					
	, nand gate stays,					
8,	and the output of the other nand gate					
R'	stays					

Invalid Input Combination: S' = R' = 0

Problem 1: Conflict



Problem 2: Race Condition

The final values of Q and Q' are ______ when changing from

_____ to _____.

As previously stated, we cannot assume two signals can change at precisely the same time.

^{© 2019,} Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in any format for **educational**, non-commercial purposes. Please give me appropriate credit should you choose to modify this resource. Thank you:)

Summary

S'	R'	Q	Q'	Action
0	0			
0	1			
1	0			
1	1			

Active ______ S-R Latch Timing Diagrams

Fill out Q and Q' for given S' and R' signals.

S'				
R'				
Q				
Ğ,				
S'				
R'				
Q				
Q'				
S'				
R'				
Q				
Q'				

D Latch

Draw the schematic here:				
	WE	D	Q	Q'
				<u> </u>

Timing Diagram Examples

Fill out Q and Q' for given WE and D signals.

			 _						
WE									
D									
Q									
Q'									
	<u> </u>				l				
WE									
D									
Q									
Q'									
WE									
D									
Q									

^{© 2019,} Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in any format for **educational**, non-commercial purposes. Please give me appropriate credit should you choose to modify this resource. Thank you:)

D:										
Register										
A D latch	is a de	vice for	storing		A		s ⁻	tores se	veral bit	īs.
Draw a d	iagram f	or a regi	ster:							
Clock										
The		for a	signal	to trave	l throug	h a wire	is			_ ·
For this	reason,	a	is ι	used to _			sign	nals in a	a compute	∍r.
A clock i	s a free	-running							sigr	nal
with a fi	xed									<u>_</u> .
The			of a	a clock i	s the					_•
Draw a c	lock sig	nal. Labe	el the ri	sing edg	ge, falli	ng edge,	and per:	iod.		
CLK										
D Flip Flo	ор									
Flip flop	s are			_ sensit	cive.					
	sens	itive: th	ne output	changes	on the		of	the enal	ble signa	al.

[©] 2019, Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in any format for **educational**, non-commercial purposes. Please give me appropriate credit should you choose to modify this resource. Thank you:)

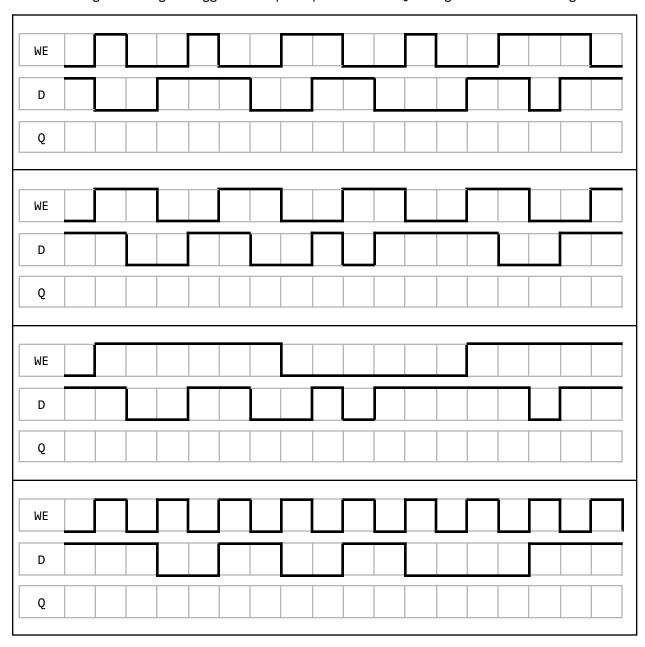
Positive Edge-Triggered Flip Flop

Draw the schematic here:								
	WE / CLK	Q	Q'					
	↑ 1							
	other							
		_	_					

Timing Diagram Examples

Assume a positive edge-triggered flip flop. Fill out Q for given WE and D signals.

				_						
WE										
D										
Q										
WE										
D										
Q										
WE										
D										
Q										
WE										
D										
Q										


^{© 2019,} Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in any format for **educational**, non-commercial purposes. Please give me appropriate credit should you choose to modify this resource. Thank you:)

Negative Edge-Triggered Flip Flop

Draw the schematic here:			
	WE / CLK	Q	Q'
	↓ 0		
	other		
		-	

Timing Diagram Examples

Assume a negative edge-triggered flip flop. Fill out Q for given WE and D signals.

^{© 2019,} Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in any format for **educational**, non-commercial purposes. Please give me appropriate credit should you choose to modify this resource. Thank you:)