Boolean Algebra

Logic Gate Review

Logic Gate Neview								
Dra	. v							
A	В	NOT A	A AND B	A NAND B	A OR B	A NOR B	A XOR B	A XNOR B

Logical Equivalence

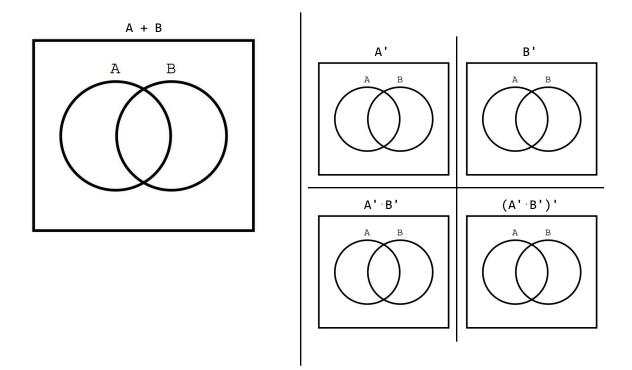
If the truth table for two circuits are the same, they are _____

Boolean Identities and Laws

Logical Inverse	0' =	1' =
Involution Law	A'' =	
Dominance	A + 1 =	A · 0 =
Identity	A + 0 =	A · 1 =

^{© 2019,} Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in any format for **educational**, non-commercial purposes. Please give me appropriate credit should you choose to modify this resource. Thank you:)

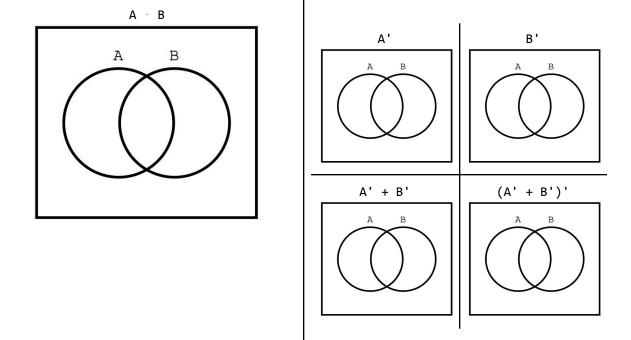
Idempotent Law	A + A =	A · A =
Law of Complementarity	A + A' =	A · A' =
Commutative Law	A + B = B + A	A · B = B · A
Associative Law	(A + B) + C = A + (B + C)	(A · B) · C = A · (B · C)
Distributive Law	$A + (B \cdot C) = (A + B) \cdot (A + C)$	$A \cdot (B + C) = (A \cdot B) + (A \cdot C)$
Absorption	A + (AB) = A	A (A + B) = A
De Morgan's Law	A + B = (A'·B')'	A · B = (A' + B')'


© 2019, Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in any format for **educational**, non-commercial purposes. Please give me appropriate credit should you choose to modify this resource. Thank you :)

De Morgan's Law

1) ______ the inputs, 2) _____, 3) ____ the output

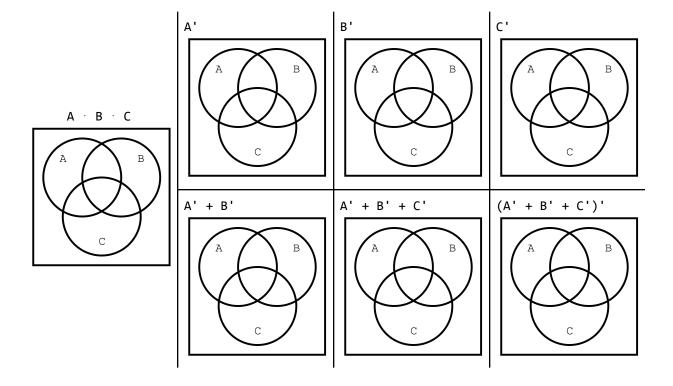
"Break the ______, change the _____"


Α	$A + B = (A' \cdot B')'$									
	A + B			_	(A'·I	3')'				
	A	В	A + B		A	В	A'	B'	A' · B'	(A'·B')'
	0	0			0	0				
	0	1			0	1				
	1	0			1	0				
	1	1		ĺ	1	1				
				[Do t	he tr	ruth	tabl	es match?	

^{© 2019,} Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in any format for educational, non-commercial purposes. Please give me appropriate credit should you choose to modify this resource. Thank you:)

 $A \cdot B = (A' + B')'$

A · B				(A' + B')'					
A	В	A · B	A	A	В	A'	B'	A' + B'	(A' + B')'
0	0		6	0	0				
0	1		6	o	1				
1	0		1	1	0				
1	1		1	1	1				
Do the truth tables match?									



Example

Show how (A · B')' = A' + B

 $A \cdot B \cdot C = (A' + B' + C')'$

Α ·	В .	C			(A'	+ B'	+ C')'				
Α	В	С	A · B	A · B · C	Α	В	С	A'	B'	C'	A' + B' + C'	(A' + B' + C')'
0	0	0			0	0	0					
0	0	1			0	0	1					
0	1	0			0	1	0					
0	1	1			0	1	1					
1	0	0			1	0	0					
1	0	1			1	0	1					
1	1	0			1	1	0					
1	1	1			1	1	1					
					Do t	he t	ruth	tabl	es m	atch	?	

 		leteness
noica	ı t ama	IDTONDES
LUZICU	COILID	16 66 116 33

You can create a circuit for ANY truth table with only	
In addition, you can complete any truth table with only	
You can also complete any truth table with only	

Only NANDS

Finish the truth table for $(A \cdot B)$ '. What happens if both inputs are the same?

A	В	(A · B)'
0	0	
0	1	
1	0	
1	1	

 $\hbox{ Draw a NOT gate using only NAND gates } \\$

Draw an AND gate using only NAND gates

Draw an OR gate using only NAND gates (hint: use DeMorgan's Law)

Draw a NOR gate using only NAND gates (hint: use DeMorgan's Law)

Only NORS

Finish the truth table for (A + B)'. What happens if both inputs are the same?

A	В	(A + B)'
0	0	
0	1	
1	0	
1	1	

Draw a NOT gate using only NOR gates

Draw an OR gate using only NOR gates

Draw an AND gate using only NOR gates (hint: use DeMorgan's Law)

Draw a NAND gate using only NOR gates (hint: use DeMorgan's Law)

XOR Example

NAND Implementation

Use DeMorgan's Law to construct an XOR gate out of only NAND gates

Draw an XOR gate and complete the truth table. Generate the SOP equation.
Draw the SOP logic circuit.
Hea DeMangan's Law to convent the OB gate to an AND gate
Use DeMorgan's Law to convert the OR gate to an AND gate.
Combine the inverter and AND gates to form NAND gates
Convert the inverters on the inputs to NAND gates

© 2019, Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in any format for **educational**, non-commercial purposes. Please give me appropriate credit should you choose to modify this resource. Thank you:)

Use DeMorgan's Law to construct an XOR gate out of only NOR gates

Draw an XOR gate and complete the truth table. Generate the POS equation.
Draw the POS logic circuit.
Use DeMorgan's Law to convert the AND gate to an OR gate.
Combine the inverters and OR gates to form NOR gates
Convert the inverters on the inputs to NOR gates

^{© 2019,} Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in any format for **educational**, non-commercial purposes. Please give me appropriate credit should you choose to modify this resource. Thank you:)

1					•
	l na	ical	-	IIIIVA	lence
	_0	icui		uivu	CIICC

If the truth table for two circuits are the same, they are logically equivalent.

Are	these	circuit	diagrams	logically	equal?
Are	these	circuit	diagrams	logically	equal?
Are	these	circuit	diagrams	logically	equal?
Are	these	circuit	diagrams	logically	equal?

^{© 2019,} Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in any format for **educational**, non-commercial purposes. Please give me appropriate credit should you choose to modify this resource. Thank you:)