Introduction

Course Content

Cross off the topics we will not be covering

How do computers work?	How are computers organized?
How do I fix computers?	Which computer should I buy?
What do computers consist of?	What are the differences between ARM,
How do I build a cheap computer?	Core i7, etc?

History Timeline

YEAR / TIME PERIOD	INVENTOR / DESIGNER	TECHNOLOGY	DESCRIPTION
Late 1500s	Scottish mathematician		
Early 1600s	German professor		
Mid 1600s	French mathematician		
Late 1600s	German mathematician, philosopher		
1801	French weaver		Power loom with
1830s	British mathematician		Machine with &that could be programmed
1830s	British mathematician		

^{© 2019,} Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in any format for **educational**, non-commercial purposes. Please give me appropriate credit should you choose to modify this resource. Thank you:)

1936	British mathematician & cryptanalyst	Could compute any problem presented in a set of A conceptual blueprint for automatic computation
1941	German engineer	First fully-functioning - controlled machine
1945	American physicist American electrical engineer	First program-controlled computer Had no
1948		Prototype of stored computer
1952	American mathematician	Converted

(Source: Computer History Museum

https://www.youtube.com/watch?v=d1pvc9Zh7Tg&t=0s&list=PLzDdlaxoYgBsAEpBBLrzQR2IXcjBlEL1R&index=3&frags=pl%2Cwn, Cartoon Guide to Computer Science, Wikipedia)

Turing Machine

Turing Macrinic	
INPUTS	OUTPUT
Example: Draw a block diagram of a Turing Mac	hine

^{© 2019,} Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in any format for **educational**, non-commercial purposes. Please give me appropriate credit should you choose to modify this resource. Thank you:)

Com	nuters	are	ever	where!
COIII	puters	ai C	CACI	y willele:

ТҮРЕ	APPLICATION
purpose	servers, desktops,
purpose / systems	cash registers,

Levels of Abstraction

DESIGNER			LEVEL	HIERARCHY
cs	CE	EE		

Natural Language

The	prob]	Lem	we	want	to	solve.
-----	-------	-----	----	------	----	--------

e.g.																
Algo	rithn	า														
													_ gua	aranteed	to	terminate
such	that	each	step	is	precisely	stated	and	can	be	carried	out	by	the	computer	٠.	

e.g.

^{© 2019,} Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in any format for **educational**, non-commercial purposes. Please give me appropriate credit should you choose to modify this resource. Thank you:)

Program Level
OS:
Computer management program / interface between application programs and machine architecture
<pre>def binary_search(array, target): mid_index = len(array)/2 median = array[mid_index] # base case if array[mix_index] == target: return elif target < median: binary_search(array[0:mid_index], target) else: binary_search(array[mid_index:], target)</pre>
Machine / Macro Architecture Also known as the ISA:
ISA defines:
1) Native
that can be executed by the system
2) Formats for & (interpretation of 1's and 0's)
In this class, we are using the instruction set.
Micro Architecture
implementation of the ISA
Different machines with the same macroarchitecture may have different micro architecture.

^{© 2019,} Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in any format for **educational**, non-commercial purposes. Please give me appropriate credit should you choose to modify this resource. Thank you:)

Logic Circuits	
	of the micro architecture that make decisions
Draw a few logic gates	
Devices / Transistors	
	of logic gates
Draw a MOSFET transistor	

© 2019, Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in any format for **educational**, non-commercial purposes. Please give me appropriate credit should you choose to modify this resource. Thank you:)